Citation: ZHOU Ting-Ting, SHI Yi-Ding, HUANG Feng-Lei. Thermal Decomposition Mechanism of β-HMX under High Pressures via ReaxFF Reactive Molecular Dynamics Simulations[J]. Acta Physico-Chimica Sinica doi: 10.3866/PKU.WHXB201208031 shu

Thermal Decomposition Mechanism of β-HMX under High Pressures via ReaxFF Reactive Molecular Dynamics Simulations

  • Received Date: 4 June 2012
    Available Online: 3 August 2012

    Fund Project: 国家自然科学基金(10832003)资助项目 (10832003)

  • The thermal decomposition mechanisms of condensed phase β-HMX at various densities (ρ= 1.89, 2.11, 2.22, 2.46, 2.80, 3.20 g·cm-3) and at 2500 K were studied using ReaxFF reactive molecular dynamics simulations. The effects of pressure on the initial and secondary reaction rates, the main differences in the initial decomposition mechanisms between highly compressed and less compressed systems, as well as the reasons for these variations were analyzed. It was determined that the initial decomposition mechanisms of HMX were dependent on pressure (or density). At low densities (ρ<2.80 g· cm-3), intramolecular reactions are dominant, these being N-NO2 bond dissociation, HONO elimination, and concerted ring fission by C-N bond scission. At high densities (ρ ≥2.80 g·cm-3), intramolecular reactions are well restrained, whereas intermolecular reactions are promoted, leading to the formation of small molecules, such as O2 and HO, and large molecular clusters. These changes in the initial decomposition mechanisms lead to different kinetic and energetic behaviors, as well as variations in the distribution of products. These results obtained through this work are significant in that they assist in understanding the chemical reactions involved in the initiation, reaction development, and detonation of energetic materials under extreme conditions.

  • 加载中
    1. [1]

      (1) Lewis, J. P.; Glaesemann, K. R.; VanOpdorp, K.; Voth, G. A.J. Phys. Chem. A 2000, 104, 11384. doi: 10.1021/jp002173g

    2. [2]

      (2) Chakraborty, D.; Muller, R. P.; ddard,W. A., III. J. Phys. Chem. A 2001, 105, 1302. doi: 10.1021/jp0026181

    3. [3]

      (3) Sharia, O.; Kuklja, M. M. J. Phys. Chem. B 2011, 115, 12677.

    4. [4]

      (4) Jiang, F. L.; Zhai, G. H.; Ding, L.; Yue, K. F.; Liu, N.; Shi, Q.Z.;Wen, Z. Y. Acta Phys. -Chim. Sin. 2010, 26, 409. [姜富灵,翟高红, 丁黎, 岳可芬, 刘妮, 史启祯, 文振翼. 物理化学学报, 2010, 26, 409.] doi: 10.3866/PKU.WHXB20100128

    5. [5]

      (5) Brill, T. B. J. Prop. Power 1995, 11, 740. doi: 10.2514/3.23899

    6. [6]

      (6) Tang, C. J.; Lee, Y. J.; Litzinger, T. A. J. Prop. Power 1999, 15,296. doi: 10.2514/2.5427

    7. [7]

      (7) Tarver, C. M.; Chidester, S. K.; Nichols, A. L. J. Phys. Chem.1996, 100, 5794. doi: 10.1021/jp953123s

    8. [8]

      (8) Gilman, J. J. Phil. Maga. B 1995, 71 (6), 1057. doi: 10.1080/01418639508241895

    9. [9]

      (9) Gilman, J. J. Phil. Maga. B 1993, 67 (2), 207. doi: 10.1080/13642819308207868

    10. [10]

      (10) Margetis, D.; Kaxiras, E.; Elstner, M.; Frauenheim, T.; Manaa,M. R. J. Chem. Phys. 2002, 117 (2), 788. doi: 10.1063/1.1466830

    11. [11]

      (11) Manaa, M. R. Appl. Phys. Lett. 2003, 83 (7), 1352. doi: 10.1063/1.1603351

    12. [12]

      (12) Lu, L. Y.;Wei, D. Q.; Chen, X. R.; Lian, D.; Ji, G. F.; Zhang, Q.M.; ng, Z. Z. Mol. Phys. 2008, 106, 2569. doi: 10.1080/00268970802616343

    13. [13]

      (13) Kuklja, M. M.; Rashkeev, S. N.; Zerilli, F. J. Appl. Phys. Lett.2006, 89 (7), 71904. doi: 10.1063/1.2335680

    14. [14]

      (14) Kuklja, M. M.; Rashkeev, S. N. Phys. Rev. B 2007, 75 (10),104111. doi: 10.1103/PhysRevB.75.104111

    15. [15]

      (15) Manaa, M. R.; Fried, L. E.; Melius, C. F.; Elstner, M.;Frauenheim, T. J. Phys. Chem. A 2002, 106 (39), 9024. doi: 10.1021/jp025668+

    16. [16]

      (16) Manaa, M. R.; Fried, L. E.; Reed, E. J. J. Computer-Aided Materials Design 2003, 10 (2), 75. doi: 10.1023/B:JCAD.0000036812.64349.15

    17. [17]

      (17) Zhu,W. H.; Huang, H.; Huang, H. J.; Xiao, H. M. J. Chem. Phys. 2012, 136, 044516. doi: 10.1063/1.3679384

    18. [18]

      (18) van Duin, A. C. T.; Dasgupta, S.; Lorant, F. J. Phys. Chem. A2001, 105 (41), 9396.

    19. [19]

      (19) Rom, N.; Zybin, S. V.; van Duin, A. C. T.; ddard,W. A., III;Zeiri, Y.; Katz, G.; Kosloff, R. J. Phys. Chem. A 2011, 115,10181. doi: 10.1021/jp202059v

    20. [20]

      (20) Zhang, L. Z.; Sergey, V. Z.; van Duin, A. C. T.; Siddharth, D.; ddard,W. A., III. J. Phys. Chem. A 2009, 113, 10619.

    21. [21]

      (21) Strachan, A.; Kober, E. M.; van Duin, A. C. T.; Oxgaard, J.; ddard,W. A., III. J. Chem. Phys. 2005, 122 (5), 54502. doi: 10.1063/1.1831277

    22. [22]

      (22) Strachan, A.; van Duin, A. C. T.; Chakraborty, D.; Dasgupta, S.; ddard,W. A., III. Phys. Rev. Lett. 2003, 91 (9), 098301. doi: 10.1103/PhysRevLett.91.098301

    23. [23]

      (23) Zybin, S. V.; ddard,W. A., III; Xu, P.; van Duin, A. C. T.;Appl. Phys. Lett. 2010, 96, 081918. doi: 10.1063/1.3323103

    24. [24]

      (24) An, Q.; Liu, Y.; Zybin, S. V.; Kim, H.; ddard,W. A., III.J. Phys. Chem. C 2012, 116 (18), 10198. doi: 10.1021/jp300711m

    25. [25]

      (25) Zhou, T. T.; Zybin, S. V.; Liu, Y.; Huang, F. L.; ddard,W. A.,III. J. Appl. Phys. 2012, 111 (12), 124904. doi: 10.1063/1.4729114

    26. [26]

      (26) Choi, C. S.; Boutin, H. P. Acta Crystallogr. B 1970, 26, 1235.

    27. [27]

      (27) Yoo, C. S.; Cynn, H. J. Chem. Phys. 1999, 111 (22), 10229. doi: 10.1063/1.480341

    28. [28]

      (28) to, N.; Fujihisa, H.; Yamawaki, H. J. Phys. Chem. B 2006,110, 23655. doi: 10.1021/jp0635359


  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240067

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202311026

    4. [4]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202309003

    5. [5]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, doi: 10.3866/PKU.DXHX202311093

    6. [6]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, doi: 10.3866/PKU.DXHX202309052

    7. [7]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, doi: 10.3866/PKU.DXHX202308044

    8. [8]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, doi: 10.3866/PKU.DXHX202401074

    9. [9]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, doi: 10.12461/PKU.DXHX202403048

    10. [10]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, doi: 10.3866/PKU.DXHX202309074

    11. [11]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202403028

    12. [12]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240128

    13. [13]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406027

    14. [14]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, doi: 10.3866/PKU.DXHX202309053

    15. [15]

      Yanhui Sun Junmin Nan Guozheng Ma Xiaoxi Zuo Guoliang Li Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, doi: 10.3866/PKU.DXHX202402023

    16. [16]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, doi: 10.12461/PKU.DXHX202402059

    17. [17]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, doi: 10.12461/PKU.DXHX202405074

    18. [18]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230312

    19. [19]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230346

    20. [20]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406024

Metrics
  • PDF Downloads(1137)
  • Abstract views(2292)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return