Citation: ZHOU Ting-Ting, SHI Yi-Ding, HUANG Feng-Lei. Thermal Decomposition Mechanism of β-HMX under High Pressures via ReaxFF Reactive Molecular Dynamics Simulations[J]. Acta Physico-Chimica Sinica doi: 10.3866/PKU.WHXB201208031
-
The thermal decomposition mechanisms of condensed phase β-HMX at various densities (ρ= 1.89, 2.11, 2.22, 2.46, 2.80, 3.20 g·cm-3) and at 2500 K were studied using ReaxFF reactive molecular dynamics simulations. The effects of pressure on the initial and secondary reaction rates, the main differences in the initial decomposition mechanisms between highly compressed and less compressed systems, as well as the reasons for these variations were analyzed. It was determined that the initial decomposition mechanisms of HMX were dependent on pressure (or density). At low densities (ρ<2.80 g· cm-3), intramolecular reactions are dominant, these being N-NO2 bond dissociation, HONO elimination, and concerted ring fission by C-N bond scission. At high densities (ρ ≥2.80 g·cm-3), intramolecular reactions are well restrained, whereas intermolecular reactions are promoted, leading to the formation of small molecules, such as O2 and HO, and large molecular clusters. These changes in the initial decomposition mechanisms lead to different kinetic and energetic behaviors, as well as variations in the distribution of products. These results obtained through this work are significant in that they assist in understanding the chemical reactions involved in the initiation, reaction development, and detonation of energetic materials under extreme conditions.
-
Keywords:
-
HMX
, - Thermal decomposition,
- Pressure,
- ReaxFF,
- Molecular dynamics
-
-
-
[1]
(1) Lewis, J. P.; Glaesemann, K. R.; VanOpdorp, K.; Voth, G. A.J. Phys. Chem. A 2000, 104, 11384. doi: 10.1021/jp002173g
-
[2]
(2) Chakraborty, D.; Muller, R. P.; ddard,W. A., III. J. Phys. Chem. A 2001, 105, 1302. doi: 10.1021/jp0026181
-
[3]
(3) Sharia, O.; Kuklja, M. M. J. Phys. Chem. B 2011, 115, 12677.
-
[4]
(4) Jiang, F. L.; Zhai, G. H.; Ding, L.; Yue, K. F.; Liu, N.; Shi, Q.Z.;Wen, Z. Y. Acta Phys. -Chim. Sin. 2010, 26, 409. [姜富灵,翟高红, 丁黎, 岳可芬, 刘妮, 史启祯, 文振翼. 物理化学学报, 2010, 26, 409.] doi: 10.3866/PKU.WHXB20100128
-
[5]
(5) Brill, T. B. J. Prop. Power 1995, 11, 740. doi: 10.2514/3.23899
-
[6]
(6) Tang, C. J.; Lee, Y. J.; Litzinger, T. A. J. Prop. Power 1999, 15,296. doi: 10.2514/2.5427
-
[7]
(7) Tarver, C. M.; Chidester, S. K.; Nichols, A. L. J. Phys. Chem.1996, 100, 5794. doi: 10.1021/jp953123s
-
[8]
(8) Gilman, J. J. Phil. Maga. B 1995, 71 (6), 1057. doi: 10.1080/01418639508241895
-
[9]
(9) Gilman, J. J. Phil. Maga. B 1993, 67 (2), 207. doi: 10.1080/13642819308207868
-
[10]
(10) Margetis, D.; Kaxiras, E.; Elstner, M.; Frauenheim, T.; Manaa,M. R. J. Chem. Phys. 2002, 117 (2), 788. doi: 10.1063/1.1466830
-
[11]
(11) Manaa, M. R. Appl. Phys. Lett. 2003, 83 (7), 1352. doi: 10.1063/1.1603351
-
[12]
(12) Lu, L. Y.;Wei, D. Q.; Chen, X. R.; Lian, D.; Ji, G. F.; Zhang, Q.M.; ng, Z. Z. Mol. Phys. 2008, 106, 2569. doi: 10.1080/00268970802616343
-
[13]
(13) Kuklja, M. M.; Rashkeev, S. N.; Zerilli, F. J. Appl. Phys. Lett.2006, 89 (7), 71904. doi: 10.1063/1.2335680
-
[14]
(14) Kuklja, M. M.; Rashkeev, S. N. Phys. Rev. B 2007, 75 (10),104111. doi: 10.1103/PhysRevB.75.104111
-
[15]
(15) Manaa, M. R.; Fried, L. E.; Melius, C. F.; Elstner, M.;Frauenheim, T. J. Phys. Chem. A 2002, 106 (39), 9024. doi: 10.1021/jp025668+
-
[16]
(16) Manaa, M. R.; Fried, L. E.; Reed, E. J. J. Computer-Aided Materials Design 2003, 10 (2), 75. doi: 10.1023/B:JCAD.0000036812.64349.15
-
[17]
(17) Zhu,W. H.; Huang, H.; Huang, H. J.; Xiao, H. M. J. Chem. Phys. 2012, 136, 044516. doi: 10.1063/1.3679384
-
[18]
(18) van Duin, A. C. T.; Dasgupta, S.; Lorant, F. J. Phys. Chem. A2001, 105 (41), 9396.
-
[19]
(19) Rom, N.; Zybin, S. V.; van Duin, A. C. T.; ddard,W. A., III;Zeiri, Y.; Katz, G.; Kosloff, R. J. Phys. Chem. A 2011, 115,10181. doi: 10.1021/jp202059v
-
[20]
(20) Zhang, L. Z.; Sergey, V. Z.; van Duin, A. C. T.; Siddharth, D.; ddard,W. A., III. J. Phys. Chem. A 2009, 113, 10619.
-
[21]
(21) Strachan, A.; Kober, E. M.; van Duin, A. C. T.; Oxgaard, J.; ddard,W. A., III. J. Chem. Phys. 2005, 122 (5), 54502. doi: 10.1063/1.1831277
-
[22]
(22) Strachan, A.; van Duin, A. C. T.; Chakraborty, D.; Dasgupta, S.; ddard,W. A., III. Phys. Rev. Lett. 2003, 91 (9), 098301. doi: 10.1103/PhysRevLett.91.098301
-
[23]
(23) Zybin, S. V.; ddard,W. A., III; Xu, P.; van Duin, A. C. T.;Appl. Phys. Lett. 2010, 96, 081918. doi: 10.1063/1.3323103
-
[24]
(24) An, Q.; Liu, Y.; Zybin, S. V.; Kim, H.; ddard,W. A., III.J. Phys. Chem. C 2012, 116 (18), 10198. doi: 10.1021/jp300711m
-
[25]
(25) Zhou, T. T.; Zybin, S. V.; Liu, Y.; Huang, F. L.; ddard,W. A.,III. J. Appl. Phys. 2012, 111 (12), 124904. doi: 10.1063/1.4729114
-
[26]
(26) Choi, C. S.; Boutin, H. P. Acta Crystallogr. B 1970, 26, 1235.
-
[27]
(27) Yoo, C. S.; Cynn, H. J. Chem. Phys. 1999, 111 (22), 10229. doi: 10.1063/1.480341
-
[28]
(28) to, N.; Fujihisa, H.; Yamawaki, H. J. Phys. Chem. B 2006,110, 23655. doi: 10.1021/jp0635359
-
[1]
-
-
[1]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240067
-
[2]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, doi: 10.3866/PKU.DXHX202310029
-
[3]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202311026
-
[4]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, doi: 10.3866/PKU.DXHX202311093
-
[5]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, doi: 10.3866/PKU.DXHX202309052
-
[6]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, doi: 10.3866/PKU.DXHX202308044
-
[7]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, doi: 10.3866/PKU.DXHX202401074
-
[8]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, doi: 10.12461/PKU.DXHX202403048
-
[9]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, doi: 10.3866/PKU.DXHX202309074
-
[10]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202403028
-
[11]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406027
-
[12]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, doi: 10.3866/PKU.DXHX202309053
-
[13]
Yanhui Sun , Junmin Nan , Guozheng Ma , Xiaoxi Zuo , Guoliang Li , Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, doi: 10.3866/PKU.DXHX202402023
-
[14]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, doi: 10.12461/PKU.DXHX202402059
-
[15]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230312
-
[16]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230346
-
[17]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406024
-
[18]
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202405005
-
[19]
Xin Lv , Hongxing Zhang , Kaibo Duan , Wenhui Dai , Zhihui Wen , Wei Guo , Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, doi: 10.3866/PKU.DXHX202309090
-
[20]
Peng GENG , Guangcan XIANG , Wen ZHANG , Haichuang LAN , Shuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240155
-
[1]
Metrics
- PDF Downloads(1137)
- Abstract views(2233)
- HTML views(19)