Citation:
CHENG Hui, YAO Jiang-Hong, CAO Ya-An. Photoelectric Conversion Efficiency of N719/TiO2-Inx%/FTO Film Electrodes Incorporating In Doped at the TiO2 Surface[J]. Acta Physico-Chimica Sinica
doi:
10.3866/PKU.WHXB201207301
-
Nanoparticles of TiO2 with surface modification by In doping were prepared using a sol-gel technique. These materials had the general formula TiO2-Inx%, where x represents the mole percent of In3+ ions in the combined In3+ and Ti4+ metal ion content. N719/TiO2/FTO (fluorine doped tin oxide) and N719/ TiO2-Inx%/FTO film electrodes were prepared, using N719 dye as a sensitizing agent. These thin film electrodes were incorporated into solar cells composed of 0.5 mol·L-1 LiI, 0.05 mol·L-1 I2, methoxypropionitrile (MPN) and Pt. It was determined that the photoelectric conversion efficiencies of the N719/TiO2-Inx%/FTO film electrodes were higher than that of N719/TiO2/FTO. In particular, the conversion efficiency of N719/TiO2-In0.1%/FTO was 20% greater than that of N719/TiO2/FTO. The band structure and In3+ ion content of TiO2-Inx% samples were analyzed using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and optical diffuse-reflection spectroscopy (DRS), as well as by examination of photoluminescence (PL) and surface photocurrent action spectra. The photo-induced charge transfer processes of the N719/TiO2-Inx%/FTO film electrodes were also elucidated using surface photocurrent action spectra. The results showed that O-In-Cln (where n=1 or 2) species were formed at the TiO2 surface, with surface state energy levels 0.3 eV below the conduction band of TiO2. The surface state energy levels of these species effectively inhibit the recombination of photo-generated carriers during the photocurrent generation process, and also serve to increase the anodic photocurrent and significantly improve the photoelectric conversion efficiency of N719/TiO2-Inx%/FTO thin film electrodes. This work also discusses the interfacial light-induced charge transfer mechanisms in these materials.
-
-
-
[1]
(1) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0
-
[2]
(2) Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.;Muller, E.; Liska, P.;Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc. 1993, 115, 6382. doi: 10.1021/ja00067a063
-
[3]
(3) Grätzel, M. J. Photochem. Photobiol. C 2003, 4, 145. doi: 10.1016/S1389-5567(03)00026-1
-
[4]
(4) Dloczik, L.; Ileperuma, O.; Lauermann, I. Peter, L. M.;Ponomarev, E. A.; Redmond, G.; Shaw, N. J.; Uhlendorf, I.J. Phys. Chem. B 1997, 101, 10281. doi: 10.1021/jp972466i
-
[5]
(5) Snaith, H. J.; Schmidt-Mende, L. Adv. Mater. 2007, 19, 3187.doi: 10.1002/adma.200602903
-
[6]
(6) Ito, S.; Zakeeruddin, S. M.; Humphry-Baker, R.; Liska, P.;Charvet, R.; Comte, P.; Nazeeruddin, M. K.; Péchy, P.; Takata,M.; Miura, H.; Uchida, S.; and Grätzel, M. Adv. Mater. 2006, 18,1202. doi: 10.1002/(ISSN)1521-4095
-
[7]
(7) Adachi, M.; Murata, Y.; Takao, J. J. Am. Chem. Soc. 2004, 126,14943. doi: 10.1021/ja048068s
-
[8]
(8) Palomares, E.; Clifford, J. N.; Haque, S. A. J. Am. Chem. Soc.2003, 125, 475. doi: 10.1021/ja027945w
-
[9]
(9) Chiba, Y.; Islam, A.;Watanabe, Y.; Komiya, R.; Koide, N.; Han,L. Jpn. J. Appl. Phys. 2006, 45, L638.
-
[10]
(10) Gao, F.;Wang, Y.; Shi, D.; Zhang, J.;Wang, M.; Jing, X.;Humphry-Baker, R.;Wang, P.; Zakeeruddin, S. M.; Grätzel, M.J. Am. Chem. Soc. 2008, 130, 10720. doi: 10.1021/ja801942j
-
[11]
(11) Yu, Q.;Wang, Y.; Yi, Z.; Zu, N.; Zhang, J.; Zhang, M.;Wang, P.ACS Nano 2010, 4, 6032. doi: 10.1021/nn101384e
-
[12]
(12) Wang, K. P.; Teng, H. Phys. Chem. Chem. Phys. 2009, 11, 9489.
-
[13]
(13) Lu, X.; Mou, X.;Wu, J.; Zhang, D.; Zhang, L.; Huang, F.; Xu,F.; Huang, S. Adv. Funct. Mater. 2010, 20, 509. doi: 10.1002/adfm.v20:3
-
[14]
(14) Imahori, H.; Hayashi, S.; Umeyama, T.; Eu, S.; Oguro, A.;Kang, S.; Matano, Y.; Shishido, T.; Ngamsinlapasathian, S.;Yoshikawa, S. Langmuir 2006, 22, 11405. doi: 10.1021/la061527d
-
[15]
(15) Okuya, M.; Nakade, K.; Kaneko, S. Sol. Energy Mater. Sol. Cells 2002, 70, 425. doi: 10.1016/S0927-0248(01)00033-2
-
[16]
(16) Ko, K. H.; Lee, Y. C.; Jung, Y. J. J. Colloid Interface Sci. 2005,283, 482. doi: 10.1016/j.jcis.2004.09.009
-
[17]
(17) Chandiran, A. K.; Sauvage, F.; Casas-Cabanas, M.; Comte, P.;Zakeeruddin, S. M.; Grätzel, M. J. Phys. Chem. C 2010, 114,15849. doi: 10.1021/jp106058c
-
[18]
(18) Iwamoto, S.; Sazanami, Y.; Inoue, M.; Inoue, T.; Hoshi, T.;Shigaki, K.; Kaneko, M.; Maenosono, A. ChemSusChem 2008,1, 401. doi: 10.1002/(ISSN)1864-564X
-
[19]
(19) Jing, L. Q.; Sun, X. J.; Xin, B. F.;Wang, B. Q.; Cai,W. M.; Fu,H. G. J. Solid State Chem. 2004, 177, 3375. doi: 10.1016/j.jssc.2004.05.064
-
[20]
(20) Ma, T.; Akiyama, M.; Abe, E.; Imai, I. Nano Lett. 2005, 5, 2543.doi: 10.1021/nl051885l
-
[21]
(21) Tian, H.; Hu, L.; Li,W.; Sheng, J.; Xu, S.; Dai, S. J. Mater. Chem. 2011, 21, 7074. doi: 10.1039/c1jm10853k
-
[22]
(22) Wang, E. J.; Yang,W. S.; Cao, Y. A. J. Phys. Chem. C 2009,113, 20912. doi: 10.1021/jp9041793
-
[23]
(23) Du1rr, M.; Rosselli, S.; Yasuda, A. J. Phys. Chem. B 2006, 110,21899. doi: 10.1021/jp063857c
-
[24]
(24) Lee, J. C.; Kim, T. G.; Lee,W.; Han, S. H.; Sung, Y. M. Crystal. Growth. Design 2009, 9, 4519. doi: 10.1021/cg9005373
-
[25]
(25) Zhai, X. H.; Zhao, J. Y.; Chao, H.; Cao, Y. A. Acta Phys. -Chim. Sin. 2010, 26, 1617. [翟晓辉, 赵俊岩, 巢晖, 曹亚安. 物理化学学报, 2010, 26, 1617.] doi: 10.3866/PKU.WHXB20100635
-
[26]
(26) Dong, J. Z.; Zhao, J. Y.; Chao, H.; Cao, Y. A. Acta Chim. Sin.2011, 69, 2781. [董江舟, 赵峻岩, 巢晖, 曹亚安. 化学学报.2011, 69, 2781.]
-
[27]
(27) Gao, B.; Ma, Y.; Cao, Y.; Yang,W.; Yao, J. J. Phys. Chem. B2006, 110, 14391. doi: 10.1021/jp0624606
-
[28]
(28) Surolia, P. K.; Tayade, R. J.; Jasra, R. V. Ind. Eng. Chem. Res.2007, 46, 6196. doi: 10.1021/ie0702678
-
[29]
(29) Cao, Y.; Yang,W.; Zhang,W.; Liu, G.; Yue, P. New J. Chem.2004, 28, 218. doi: 10.1039/b306845e
-
[30]
(30) Okushita, H.; Shimidzu, T. Bull. Chem. Soc. Jpn. 1990, 63, 920.doi: 10.1246/bcsj.63.920
-
[31]
(31) Reddya, B. M.; Chowdhury, B.; Smirniotis, P. G. Applied Catalysis A 2001, 219, 53. doi: 10.1016/S0926-860X(01)00658-5
-
[32]
(32) Mousty-Desbuquoit, C.; Riga, J.; Verbist, J. J. J. Chem. Phys.1983, 79, 26. doi: 10.1063/1.445567
-
[33]
(33) Freeland, B. H.; Habeeb, J. J.; Tuck, D. G. Can. J. Chem. 1977,55, 1528.
-
[34]
(34) Zhu, J.; Zheng,W.; He, B.; Zhang, J.; Anpo, M. J. Mol. Catal. A2004, 216, 35. doi: 10.1016/j.molcata.2004.01.008
-
[35]
(35) Liang, C.; Li, F.; Liu, C.; Lu, J.;Wang, X. Dyes Pigm. 2008, 76,477. doi: 10.1016/j.dyepig.2006.10.006
-
[36]
(36) Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Chem. Mater. 2005,17, 2596. doi: 10.1021/cm049099p
-
[37]
(37) Serpone, N.; Lawless, D.; Khairutdinov, R. J. Phys. Chem.1995, 99, 16655. doi: 10.1021/j100045a027
-
[38]
(38) Yu, J. C.; Ho,W.; Yu, J.; Hark, S. K.; Iu, K. Langmuir 2003, 19,3889. doi: 10.1021/la025775v
-
[39]
(39) Saraf, L. V.; Patil, S. I.; Ogale, S. B.; Sainkar, S. R.; Kshirsager,S. T. Int. J. Mod. Phys. B 1998, 12, 2635. doi: 10.1142/S0217979298001538
-
[40]
(40) Matar, F.; Ghaddar, T. H.; O'Regan, B. J. Mater. Chem. 2008,18, 4246. doi: 10.1039/b808255c
-
[1]
-
-
-
[1]
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406007
-
[2]
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, doi: 10.1016/j.cjsc.2024.100287
-
[3]
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, doi: 10.1016/j.cclet.2024.110602
-
[4]
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240236
-
[5]
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, doi: 10.1016/j.cclet.2023.109415
-
[6]
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, doi: 10.1016/j.cclet.2024.109698
-
[7]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406019
-
[8]
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, doi: 10.1016/j.cclet.2024.109931
-
[9]
Hai-Yang Song , Jun Jiang , Yu-Hang Song , Min-Hang Zhou , Chao Wu , Xiang Chen , Wei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, doi: 10.1016/j.cclet.2023.109246
-
[10]
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230315
-
[11]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, doi: 10.1016/j.cjsc.2023.100096
-
[12]
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, doi: 10.1016/j.cclet.2023.109193
-
[13]
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, doi: 10.1016/j.cjsc.2024.100305
-
[14]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202408015
-
[15]
Jiatong Li , Linlin Zhang , Peng Huang , Chengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, doi: 10.1016/j.cclet.2024.109970
-
[16]
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240063
-
[17]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240210
-
[18]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230282
-
[19]
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, doi: 10.1016/j.cclet.2023.109428
-
[20]
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, doi: 10.1016/j.cjsc.2024.100453
-
[1]
Metrics
- PDF Downloads(963)
- Abstract views(2228)
- HTML views(62)