Citation: XIE Ting, LIU Hao-Wen, YANG Han-Min. Control Synthesis of Branched Palladium Nanostructures and the Catalytic Activity on Hydrogenation Reaction of Nitrobenzene[J]. Acta Physico-Chimica Sinica doi: 10.3866/PKU.WHXB201207031 shu

Control Synthesis of Branched Palladium Nanostructures and the Catalytic Activity on Hydrogenation Reaction of Nitrobenzene

  • Received Date: 15 May 2012
    Available Online: 3 July 2012

    Fund Project: 中央高校基本科研业务费用专项基金(ZZY10004)资助 (ZZY10004)

  • Branched palladium nanostructures were synthesized under microwave irradiation using polyvinylpyrrolidone (PVP) as stabilizer and benzyl glycol as the reducing agent of H2PdCl4. Morphology and structure were characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), and showed that the branched Pd nanostructures were self-assemblies of hundreds of small spherical nanoparticles. Furthermore, catalytic properties of the branched Pd nanostructures were investigated for the hydrogenation of nitrobenzene, which indicated that the catalytic activity of the branched Pd nanostructures for this reaction is higher than that of a conventional Pd/C catalyst.


    1. [1]

      (1) Boal, A. K.; Ilhan, F.; DeRouchey, J. E.; Thurn-Albrecht, T.;Russell, T. P.; Rotello, V. M. Nature 2000, 404 (3), 746.

    2. [2]

      (2) Huang, L. Z.;Wang, Y.;Wang, Y. L. Noble Metal 1997, 18 (3),58. [黄黎中, 王瑛, 王永力. 贵金属, 1997, 18 (3), 58.]

    3. [3]

      (3) Nishihata, Y.; Mizuki, J.; Akao, T.; Tanaka, H.; Uenishi, M.;Kimura, M.; Okamoto, T.; Hamada, N. Nature 2002, 418, 164.doi: 10.1038/nature00893

    4. [4]

      (4) Huang, L.;Wong, P. K.; Tan, J. J. Phys. Chem. C 2009, 113,10120. doi: 10.1021/jp811188f

    5. [5]

      (5) Pacardo, D. B.; Sethi, M.; Jones, S. E.; Naik, R. R.; Knecht, M.R. ACS Nano 2009, 3 (5), 1288. doi: 10.1021/nn9002709

    6. [6]

      (6) Xiong, Y. J.; Xia, Y. N. Advanced Materials 2007, 19, 3385. doi: 10.1002/adma.200701301

    7. [7]

      (7) Xiong, Y. J.; Chen, J. Y.; Benjamin,W.; Xia, Y. N.; Yin, Y. D.;Li, Z. Y. Nano Letters 2005, 5 (7), 1237. doi: 10.1021/nl0508826

    8. [8]

      (8) Xiong, Y. J.; Joseph, M. M.; Yin, Y. D.; Xia, Y. N. Angew. Chem. Int. Edit. 2007, 46, 790. doi: 10.1002/anie.200604032

    9. [9]

      (9) Xiong, Y. J.; Cai, H. G.; Yin, Y. D.; Xia, Y. N. Chemical Physics Letters 2007, 440, 273. doi: 10.1016/j.cplett.2007.04.074

    10. [10]

      (10) Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.;Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Nat. Nanotechnol. 2011, 6, 28.

    11. [11]

      (11) Huang, X. Q.; Tang, S. H.; Zhang, H. H.; Zhou, Z. Y.; Zheng, N.F. J. Am. Chem. Soc. 2009, 131, 13916. doi: 10.1021/ja9059409

    12. [12]

      (12) Huang, X. Q.; Tang, S. H.; Yang, J.; Tan, Y. M.; Zheng, N. F.J. Am. Chem. Soc. 2011, 133, 15946. doi: 10.1021/ja207788h

    13. [13]

      (13) Lin, X. F.; Chen, Z. C.; Lü, D. S.; He, L.; Zhang, D. T. Polymer Science and Engineering 2000, 16 (4), 5. [林贤福, 陈志春,吕德水, 何琳, 张大同. 高分子材料科学与工程, 2000, 16 (4), 5.]

    14. [14]

      (14) Sun, Z. C.; Bai, F.;Wu, H. M.; Samantha, K. S.; Daniel, M. B.;Jiang, Z.;Wang, J.; Fan, H. Y. Chem. Eur. J. 2009, 15, 11128.doi: 10.1002/chem.200901786

    15. [15]

      (15) Naka, K.; Sato, M.; Chujo, Y. Langmuir 2008, 24 (6), 2719. doi: 10.1021/la7027109

    16. [16]

      (16) Zheng, L. Z.; Li, J. H. J. Phys. Chem. B 2005, 109 (3), 1108.doi: 10.1021/jp0456234

    17. [17]

      (17) Kochkar, H.; Aouine, M.; Ghorbel, A.; Berhault, G. J. Phys. Chem. C 2011, 115, 11364.

    18. [18]

      (18) Tong, X.; Zhao, Y. X.; Huang, T.; Liu, H. F.; Liew, K. Y. Applied Surface Science 2009, 255, 9463. doi: 10.1016/j.apsusc.2009.07.059

    19. [19]

      (19) Cheng, C. D.; Ravi, K. G.; Gu, Q.; Haynie, D. T. Nano Letters2005, 5 (1), 175. doi: 10.1021/nl048240q

    20. [20]

      (20) Chen, Y.; He, B.; Liu, H. J. Mater. Sci. Technol. 2005, 21 (2),187.

    21. [21]

      (21) Handbook of X-ray Photoelectron Spectroscopy;Wagner, C. D.,Riggs,W. M., Davis, L. E., Moulder, F., Muilenberg, G. E. Eds.;Perkin-Elmer: Phys. Electr. Division, Eden Prairie, 1979.


    1. [1]

      (1) Boal, A. K.; Ilhan, F.; DeRouchey, J. E.; Thurn-Albrecht, T.;Russell, T. P.; Rotello, V. M. Nature 2000, 404 (3), 746.

    2. [2]

      (2) Huang, L. Z.;Wang, Y.;Wang, Y. L. Noble Metal 1997, 18 (3),58. [黄黎中, 王瑛, 王永力. 贵金属, 1997, 18 (3), 58.]

    3. [3]

      (3) Nishihata, Y.; Mizuki, J.; Akao, T.; Tanaka, H.; Uenishi, M.;Kimura, M.; Okamoto, T.; Hamada, N. Nature 2002, 418, 164.doi: 10.1038/nature00893

    4. [4]

      (4) Huang, L.;Wong, P. K.; Tan, J. J. Phys. Chem. C 2009, 113,10120. doi: 10.1021/jp811188f

    5. [5]

      (5) Pacardo, D. B.; Sethi, M.; Jones, S. E.; Naik, R. R.; Knecht, M.R. ACS Nano 2009, 3 (5), 1288. doi: 10.1021/nn9002709

    6. [6]

      (6) Xiong, Y. J.; Xia, Y. N. Advanced Materials 2007, 19, 3385. doi: 10.1002/adma.200701301

    7. [7]

      (7) Xiong, Y. J.; Chen, J. Y.; Benjamin,W.; Xia, Y. N.; Yin, Y. D.;Li, Z. Y. Nano Letters 2005, 5 (7), 1237. doi: 10.1021/nl0508826

    8. [8]

      (8) Xiong, Y. J.; Joseph, M. M.; Yin, Y. D.; Xia, Y. N. Angew. Chem. Int. Edit. 2007, 46, 790. doi: 10.1002/anie.200604032

    9. [9]

      (9) Xiong, Y. J.; Cai, H. G.; Yin, Y. D.; Xia, Y. N. Chemical Physics Letters 2007, 440, 273. doi: 10.1016/j.cplett.2007.04.074

    10. [10]

      (10) Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.;Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Nat. Nanotechnol. 2011, 6, 28.

    11. [11]

      (11) Huang, X. Q.; Tang, S. H.; Zhang, H. H.; Zhou, Z. Y.; Zheng, N.F. J. Am. Chem. Soc. 2009, 131, 13916. doi: 10.1021/ja9059409

    12. [12]

      (12) Huang, X. Q.; Tang, S. H.; Yang, J.; Tan, Y. M.; Zheng, N. F.J. Am. Chem. Soc. 2011, 133, 15946. doi: 10.1021/ja207788h

    13. [13]

      (13) Lin, X. F.; Chen, Z. C.; Lü, D. S.; He, L.; Zhang, D. T. Polymer Science and Engineering 2000, 16 (4), 5. [林贤福, 陈志春,吕德水, 何琳, 张大同. 高分子材料科学与工程, 2000, 16 (4), 5.]

    14. [14]

      (14) Sun, Z. C.; Bai, F.;Wu, H. M.; Samantha, K. S.; Daniel, M. B.;Jiang, Z.;Wang, J.; Fan, H. Y. Chem. Eur. J. 2009, 15, 11128.doi: 10.1002/chem.200901786

    15. [15]

      (15) Naka, K.; Sato, M.; Chujo, Y. Langmuir 2008, 24 (6), 2719. doi: 10.1021/la7027109

    16. [16]

      (16) Zheng, L. Z.; Li, J. H. J. Phys. Chem. B 2005, 109 (3), 1108.doi: 10.1021/jp0456234

    17. [17]

      (17) Kochkar, H.; Aouine, M.; Ghorbel, A.; Berhault, G. J. Phys. Chem. C 2011, 115, 11364.

    18. [18]

      (18) Tong, X.; Zhao, Y. X.; Huang, T.; Liu, H. F.; Liew, K. Y. Applied Surface Science 2009, 255, 9463. doi: 10.1016/j.apsusc.2009.07.059

    19. [19]

      (19) Cheng, C. D.; Ravi, K. G.; Gu, Q.; Haynie, D. T. Nano Letters2005, 5 (1), 175. doi: 10.1021/nl048240q

    20. [20]

      (20) Chen, Y.; He, B.; Liu, H. J. Mater. Sci. Technol. 2005, 21 (2),187.

    21. [21]

      (21) Handbook of X-ray Photoelectron Spectroscopy;Wagner, C. D.,Riggs,W. M., Davis, L. E., Moulder, F., Muilenberg, G. E. Eds.;Perkin-Elmer: Phys. Electr. Division, Eden Prairie, 1979.


  • 加载中
    1. [1]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202309043

    2. [2]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240065

    3. [3]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, doi: 10.3866/PKU.DXHX202311024

    4. [4]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202402016

    5. [5]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240047

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202310029

    8. [8]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240075

    9. [9]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, doi: 10.3866/PKU.DXHX202307051

    10. [10]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, doi: 10.3866/PKU.DXHX202308060

    11. [11]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, doi: 10.3866/PKU.DXHX202401076

    12. [12]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240088

    13. [13]

      Cuiping Yang Huiping Ding Jinpeng Hou Kai Li Weiliang Tian . Reform and Exploration of “Comprehensive and Precise Process” Assessment in Chemical Engineering Principle Experimental Course. University Chemistry, doi: 10.3866/PKU.DXHX202309087

    14. [14]

      Jianmin Hao Ruifeng Wu Ying Wang Yijia Bai Xuechuan Gao Yuying Du . Reform and Practice of Physical Chemistry Course Based on Enhanced Process Assessment and Evaluation. University Chemistry, doi: 10.3866/PKU.DXHX202311103

    15. [15]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, doi: 10.3866/PKU.DXHX202311102

    16. [16]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, doi: 10.3866/PKU.DXHX202306084

    17. [17]

      Manman Jin Zhiguo Lv Qingtao Niu . Teaching Reformation and Case Study for “Chemical Process Development and Design” Based on “Just-in-Time” Dynamic and Accurate Matching Industrial Needs. University Chemistry, doi: 10.12461/PKU.DXHX202403030

    18. [18]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, doi: 10.3866/PKU.DXHX202311054

    19. [19]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, doi: 10.12461/PKU.DXHX202311055

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(771)
  • Abstract views(1844)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return