Citation: GUO Zheng, HU Xin-Gen, LIANG Hong-Yu, JIA Zhao-Peng, CHENG Wei-Na, LIU Jia-Min. Enthalpic Pairwise Interactions of α-Aminobutyric Acid Enantiomers in DMF+Water Mixtures[J]. Acta Physico-Chimica Sinica doi: 10.3866/PKU.WHXB201206261 shu

Enthalpic Pairwise Interactions of α-Aminobutyric Acid Enantiomers in DMF+Water Mixtures

  • Received Date: 17 March 2012
    Available Online: 26 June 2012

    Fund Project: 国家自然科学基金(21073132)资助项目 (21073132)

  • Dilution enthalpies of two α-aminobutyric acid enantiomers, L-α-aminobutyric acid and D-α-aminobutyric acid, in dimethylformide (DMF)+water mixtures of various compositions are determined by isothermal titration microcalorimetry (ITC) at 298.15 K. Homotactic enthalpic pairwise interaction coefficients for each solvent composition are calculated according to the McMillan-Mayer theory of statistical thermodynamics. From the point of view of solute-solute and solute-solvent interactions, competition equilibria among hydrophobic-hydrophobic, hydrophobic-hydrophilic, and hydrophilichydrophilic interactions in ternary solutions are explored. It is found that all values of hxx are positive across the entire studied composition range of mixed solvents (mass fraction of DMF, wDMF=0-0.3), gradually reducing with the increasing wDMF. It is of interest that the hxx values for the L-enantiomer are universally larger than those of the D-enantiomer (hLL>hDD), which indicates that ITC is useful to discriminate homochiral enthalpic pairwise interaction of enantiomers. Our results show that hydrophobic-hydrophobic and hydrophobic-hydrophilic interactions are predominant in pairwise molecular interaction processes in ternary solutions containing α-aminobutyric acid, water, and DMF, and that the configuration of L-L molecular pair is more advantageous for the approach of hydrophobic side-chains (CH3CH2-) on α-carbon than a D-D pair, where part of the structured water molecules relax to less structured bulky water due to the overlap and partial breaking of hydrophobic hydration cospheres around nonpolar groups. This confirms that the process is spontaneous and is accompanied with positive enthalpy change and obvious increase in entropy (ΔG<0, ΔH>0, and ΔS=(ΔHG)/T>0), consequently releasing more heat upon dilution of the solutions and leading to larger values of hxx.


    1. [1]

      (1) McMillan,W. G.; Mayer, J. E. J. Chem. Phys. 1945, 13, 276.doi: 10.1063/1.1724036

    2. [2]

      (2) Kozak, J. J.; Knight,W. S.; Kauzmann,W. J. Chem. Phys. 1968,48, 675. doi: 10.1063/1.1668700

    3. [3]

      (3) Piekarski, H. Pure Appl. Chem. 1999, 71 (7), 1275. doi: 10.1351/pac199971071275

    4. [4]

      (4) Castronuovo, G.; Elia, V.; Perez-Casas, S.; Velleca, F. J. Mol. Liq. 2000, 88 (2), 163. doi: 10.1016/S0167-7322(00)00151-3

    5. [5]

      (5) Zhu, Y.; Yu, L.; Pang, X. J. Chem. Eng. Data 2009, 54 (6),1910. doi: 10.1021/je900086b

    6. [6]

      (6) Palecz, B.; Dunal, J.;Waliszewski, D. J. Chem. Eng. Data 2010,55 (11), 5216. doi: 10.1021/je100756z

    7. [7]

      (7) Alston, J. R.; Overson, D.; Poler, J. C. Langmuir 2012, 28 (1),264. doi: 10.1021/la203765j

    8. [8]

      (8) Castronuovo, G.; Elia, V.; Moniello, V.; Velleca, F.; Perez-Casas, S. Phys. Chem. Chem. Phys. 1999, 1 (8), 1887.

    9. [9]

      (9) Palecz, B. J. Am. Chem. Soc. 2002, 124 (21), 6003. doi: 10.1021/ja011937i

    10. [10]

      (10) Palecz, B. J. Am. Chem. Soc. 2005, 127 (50), 17768.doi: 10.1021/ja054407l

    11. [11]

      (11) Zhang, H.; Hu, X.; Shao, S. J. Chem. Eng. Data 2010, 55 (2),941. doi: 10.1021/je9005322

    12. [12]

      (12) Guo, A.; Hu, X.; Fang, G.; Shao, S.; Zhang, H. J. Chem. Eng. Data 2011, 56 (5), 2489. doi: 10.1021/je101353r

    13. [13]

      (13) Guo, Z.; Hu, X.; Fang, G.; Shao, S.; Guo, A.; Liang, H.Thermochim Acta 2012, 534, 51. doi: 10.1016/j.tca.2012.02.004

    14. [14]

      (14) Fini, P.; Castagnolo, M. J. Therm. Anal. Calorim. 2001, 66 (1),91. doi: 10.1023/A:1012435631222

    15. [15]

      (15) Borghesani, G.; Pulidori, F. Can. J. Chem. 1984, 62, 2898. doi: 10.1139/v84-490

    16. [16]

      (16) Thompson, P. T.; Davis, C. B.;Wood, R. H. J. Phys. Chem.1988, 92 (22), 6386. doi: 10.1021/j100333a041

    17. [17]

      (17) Gaffney, S. H.; Haslam, E.; Lilley, T. H. Thermochim. Acta1985, 86, 175. doi: 10.1016/0040-6031(85)87046-5

    18. [18]

      (18) Piekarski, H. J. Chem. Soc. Faraday Trans. I 1988, 84, 591.doi: 10.1039/f19888400591

    19. [19]

      (19) Bloemendal, M.; Sijpkes, A. H.; Somsen, G. J. Solut. Chem.1986, 11 (1), 81.

    20. [20]

      (20) Bloemendal, M.; Somsen, G. J. Am. Chem. Soc. 1985, 107 (12),3426. doi: 10.1021/ja00298a005

    21. [21]

      (21) Lei, Y.; Li, H.; Pan, H.; Han, S. J. Phys. Chem. A 2003, 107,1574.

    22. [22]

      (22) Xu, Z.; Li, H.;Wang, C.; Pan, H.; Han, S. J. Chem. Phys. 2006,124, 244502. doi: 10.1063/1.2206177

    23. [23]

      (23) Park, S. K.; Min, K. C.; Lee, C.; Hong, S. K.; Kim, Y.; Lee, N.S. Bull. Korean Chem. Soc. 2009, 30 (11), 2595. doi: 10.5012/bkcs.2009.30.11.2595

    24. [24]

      (24) Gilli, P.; Bertolasi, V.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc.1994, 116 (3), 909. doi: 10.1021/ja00082a011

    25. [25]

      (25) Gallardo, M. A.; Lilley, T. H.; Linsdell, H.; Otin, S. Thermochim. Acta 1993, 223, 41. doi: 10.1016/0040-6031(93)80118-T

    26. [26]

      (26) Lin, R.; Hu, X.; Ren, X. Thermochim. Acta 2000, 352-353, 31.

    27. [27]

      (27) Lu, Y.; Xie,W.; Lu, J. Thermochim. Acta 2002, 385, 1.doi: 10.1016/S0040-6031(01)00700-6

    28. [28]

      (28) Barone, G.; Castronuovo, G.; Vecchio, P.; Elia, V.; Puzziello, S.J. Solut. Chem. 1989, 18 (12), 1105. doi: 10.1007/BF00647267

    29. [29]

      (29) Castronuovo, G.; Elia, V.; Velleca, F. J. Solut. Chem. 1995, 24 (12), 1209. doi: 10.1007/BF00972829

    30. [30]

      (30) Andini, S.; Castronuovo, G.; Elia, V.; Velleca, F. J. Solut. Chem. 1995, 24 (5), 485.

    31. [31]

      (31) Andini, S.; Castronuovo, G.; Elia, V.; Pignone, A.; Velleca, F.J. Solut. Chem. 1996, 25 (9), 837.

    32. [32]

      (32) Smirnov, V. I.; Badelin, V. G. J. Solut. Chem. 2008, 37 (10),1419. doi: 10.1007/s10953-008-9313-z


    1. [1]

      (1) McMillan,W. G.; Mayer, J. E. J. Chem. Phys. 1945, 13, 276.doi: 10.1063/1.1724036

    2. [2]

      (2) Kozak, J. J.; Knight,W. S.; Kauzmann,W. J. Chem. Phys. 1968,48, 675. doi: 10.1063/1.1668700

    3. [3]

      (3) Piekarski, H. Pure Appl. Chem. 1999, 71 (7), 1275. doi: 10.1351/pac199971071275

    4. [4]

      (4) Castronuovo, G.; Elia, V.; Perez-Casas, S.; Velleca, F. J. Mol. Liq. 2000, 88 (2), 163. doi: 10.1016/S0167-7322(00)00151-3

    5. [5]

      (5) Zhu, Y.; Yu, L.; Pang, X. J. Chem. Eng. Data 2009, 54 (6),1910. doi: 10.1021/je900086b

    6. [6]

      (6) Palecz, B.; Dunal, J.;Waliszewski, D. J. Chem. Eng. Data 2010,55 (11), 5216. doi: 10.1021/je100756z

    7. [7]

      (7) Alston, J. R.; Overson, D.; Poler, J. C. Langmuir 2012, 28 (1),264. doi: 10.1021/la203765j

    8. [8]

      (8) Castronuovo, G.; Elia, V.; Moniello, V.; Velleca, F.; Perez-Casas, S. Phys. Chem. Chem. Phys. 1999, 1 (8), 1887.

    9. [9]

      (9) Palecz, B. J. Am. Chem. Soc. 2002, 124 (21), 6003. doi: 10.1021/ja011937i

    10. [10]

      (10) Palecz, B. J. Am. Chem. Soc. 2005, 127 (50), 17768.doi: 10.1021/ja054407l

    11. [11]

      (11) Zhang, H.; Hu, X.; Shao, S. J. Chem. Eng. Data 2010, 55 (2),941. doi: 10.1021/je9005322

    12. [12]

      (12) Guo, A.; Hu, X.; Fang, G.; Shao, S.; Zhang, H. J. Chem. Eng. Data 2011, 56 (5), 2489. doi: 10.1021/je101353r

    13. [13]

      (13) Guo, Z.; Hu, X.; Fang, G.; Shao, S.; Guo, A.; Liang, H.Thermochim Acta 2012, 534, 51. doi: 10.1016/j.tca.2012.02.004

    14. [14]

      (14) Fini, P.; Castagnolo, M. J. Therm. Anal. Calorim. 2001, 66 (1),91. doi: 10.1023/A:1012435631222

    15. [15]

      (15) Borghesani, G.; Pulidori, F. Can. J. Chem. 1984, 62, 2898. doi: 10.1139/v84-490

    16. [16]

      (16) Thompson, P. T.; Davis, C. B.;Wood, R. H. J. Phys. Chem.1988, 92 (22), 6386. doi: 10.1021/j100333a041

    17. [17]

      (17) Gaffney, S. H.; Haslam, E.; Lilley, T. H. Thermochim. Acta1985, 86, 175. doi: 10.1016/0040-6031(85)87046-5

    18. [18]

      (18) Piekarski, H. J. Chem. Soc. Faraday Trans. I 1988, 84, 591.doi: 10.1039/f19888400591

    19. [19]

      (19) Bloemendal, M.; Sijpkes, A. H.; Somsen, G. J. Solut. Chem.1986, 11 (1), 81.

    20. [20]

      (20) Bloemendal, M.; Somsen, G. J. Am. Chem. Soc. 1985, 107 (12),3426. doi: 10.1021/ja00298a005

    21. [21]

      (21) Lei, Y.; Li, H.; Pan, H.; Han, S. J. Phys. Chem. A 2003, 107,1574.

    22. [22]

      (22) Xu, Z.; Li, H.;Wang, C.; Pan, H.; Han, S. J. Chem. Phys. 2006,124, 244502. doi: 10.1063/1.2206177

    23. [23]

      (23) Park, S. K.; Min, K. C.; Lee, C.; Hong, S. K.; Kim, Y.; Lee, N.S. Bull. Korean Chem. Soc. 2009, 30 (11), 2595. doi: 10.5012/bkcs.2009.30.11.2595

    24. [24]

      (24) Gilli, P.; Bertolasi, V.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc.1994, 116 (3), 909. doi: 10.1021/ja00082a011

    25. [25]

      (25) Gallardo, M. A.; Lilley, T. H.; Linsdell, H.; Otin, S. Thermochim. Acta 1993, 223, 41. doi: 10.1016/0040-6031(93)80118-T

    26. [26]

      (26) Lin, R.; Hu, X.; Ren, X. Thermochim. Acta 2000, 352-353, 31.

    27. [27]

      (27) Lu, Y.; Xie,W.; Lu, J. Thermochim. Acta 2002, 385, 1.doi: 10.1016/S0040-6031(01)00700-6

    28. [28]

      (28) Barone, G.; Castronuovo, G.; Vecchio, P.; Elia, V.; Puzziello, S.J. Solut. Chem. 1989, 18 (12), 1105. doi: 10.1007/BF00647267

    29. [29]

      (29) Castronuovo, G.; Elia, V.; Velleca, F. J. Solut. Chem. 1995, 24 (12), 1209. doi: 10.1007/BF00972829

    30. [30]

      (30) Andini, S.; Castronuovo, G.; Elia, V.; Velleca, F. J. Solut. Chem. 1995, 24 (5), 485.

    31. [31]

      (31) Andini, S.; Castronuovo, G.; Elia, V.; Pignone, A.; Velleca, F.J. Solut. Chem. 1996, 25 (9), 837.

    32. [32]

      (32) Smirnov, V. I.; Badelin, V. G. J. Solut. Chem. 2008, 37 (10),1419. doi: 10.1007/s10953-008-9313-z


  • 加载中
    1. [1]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, doi: 10.3866/PKU.DXHX202311034

    2. [2]

      Xiaolei Jiang Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, doi: 10.3866/PKU.DXHX202402052

    3. [3]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, doi: 10.12461/PKU.DXHX202403106

    4. [4]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, doi: 10.3866/PKU.DXHX202309053

    5. [5]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240379

    6. [6]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, doi: 10.3866/PKU.DXHX202308113

    7. [7]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, doi: 10.3866/PKU.DXHX202311024

    8. [8]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202309027

    9. [9]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, doi: 10.3866/PKU.DXHX202309004

    10. [10]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, doi: 10.12461/PKU.DXHX202310091

    11. [11]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, doi: 10.12461/PKU.DXHX202404119

    12. [12]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240265

    13. [13]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, doi: 10.3866/PKU.DXHX202311011

    14. [14]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, doi: 10.12461/PKU.DXHX202403012

    15. [15]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202308042

    16. [16]

      Tiejun Su . The Construction and Application of the Calculation Formula for Endpoint Error in Precipitation Titration: A Case Study of the Mohr Method. University Chemistry, doi: 10.12461/PKU.DXHX202402039

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230431

    18. [18]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240382

    19. [19]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240304

    20. [20]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, doi: 10.12461/PKU.DXHX202405074

Metrics
  • PDF Downloads(871)
  • Abstract views(2019)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return