Citation: LIU Ling-Tao, ZHANG Bin, LI Jing, MA Ding, KOU Yuan. Selective Degradation of Organosolv Lignin over Noble Metal Catalyst in a Two-Step Process[J]. Acta Physico-Chimica Sinica, ;2012, 28(10): 2343-2348. doi: 10.3866/PKU.WHXB201206152 shu

Selective Degradation of Organosolv Lignin over Noble Metal Catalyst in a Two-Step Process

  • Received Date: 8 May 2012
    Available Online: 15 June 2012

    Fund Project: 国家重点基础研究发展规划项目(973) (2011CB201402)资助 (973) (2011CB201402)

  • Dioxane lignin, a typical organosolv lignin, was degraded by supported noble metal catalysts and phosphoric acid by a two-step method at different temperatures. The results showed that under 4 MPa H2 at 270 ℃ using Rh/C and 1% (w) phosphoric acid as catalysts, the highest total yield of the monomers and dimer was 16.9% after the first step, based on gas chromatography (GC) and gas chromatographymass spectrometry (GC-MS) analyses. Moreover, the raw products from the first step were analyzed by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), element analysis (EA), and gel permeation chromatography (GPC) to improve the understanding of the chemical transformations involved. The results indicated that the C-O-C bond linkages in the dioxane lignin were cleaved to form lower molecular-weight products, resulting in the degradation of lignin, and the carbonyl and carboxyl groups were partly removed. Oxygen content was reduced dramatically with increasing reaction temperature, from 35% (w) to 21% (w) after reacting at 270 ℃ for 10 h. Based on the analysis results, a reaction pathway for the degradation of lignin was proposed. Finally, the products from the first step could be hydrodeoxygenated to alkanes with carbon numbers in the range of gasoline and diesel with high selectivity catalyzed by Pd/C and phosphoric acid at 250 ℃.

  • 
    1. [1]

      (1) Huber, G.W.; Iborra, S.; Corma, A. Chem. Rev. 2006, 106, 4044.doi: 10.1021/cr068360d

    2. [2]

      (2) Huber, G.W.; Chheda, J. N.; Barrett, C. J.; Dumesic, J. A.Science 2005, 308, 1446.

    3. [3]

      (3) Rinaldi, R.; Palkovits, R.; Schueth, F. Angew. Chem. Int. Edit.2008, 47, 8047. doi: 10.1002/anie.200802879

    4. [4]

      (4) Deng, L.; Li, J.; Lai, D. M.; Fu, Y.; Guo, Q. X. Angew. Chem. Int. Edit. 2009, 48, 6529. doi: 10.1002/anie.200902281

    5. [5]

      (5) Bond, J. Q.; Alonso, D. M.;Wang, D.;West, R. M.; Dumesic, J.A. Science 2010, 327, 1110. doi: 10.1126/science.1184362

    6. [6]

      (6) Bozell, J. J. Science 2010, 329, 522. doi: 10.1126/science.1191662

    7. [7]

      (7) Geilen, F. M. A.; Engendahl, B.; Harwardt, A.; Marquardt,W.;Klankermayer, J.; Leitner,W. Angew. Chem. Int. Edit. 2010, 49,5510. doi: 10.1002/anie.201002060

    8. [8]

      (8) Corma, A.; de la Torre, O.; Renz, M.; Villandier, N. Angew. Chem. Int. Edit. 2011, 50, 2375.

    9. [9]

      (9) Du, X. L.; He, L.; Zhao, S.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan,K. N. Angew. Chem. Int. Edit. 2011, 50, 7815. doi: 10.1002/anie.201100102

    10. [10]

      (10) Rackemann, D.W.; Doherty,W. O. S. Biofuel. Bioprod. Bior.2011, 5, 198. doi: 10.1002/bbb.267

    11. [11]

      (11) Fukuoka, A.; Dhepe, P. L. Angew. Chem. Int. Edit. 2006, 45,5161. doi: 10.1002/anie.200601921

    12. [12]

      (12) Luo, C.;Wang, S.; Liu, H. Angew. Chem. Int. Edit. 2007, 46,7636. doi: 10.1002/anie.200702661

    13. [13]

      (13) Ji, N.; Zhang, T.; Zheng, M.;Wang, A.;Wang, H.;Wang, X.;Chen, J. G. Angew. Chem. Int. Edit. 2008, 47, 8510. doi: 10.1002/anie.200803233

    14. [14]

      (14) Zhao, H.; Holladay, J. E.; Brown, H.; Zhang, Z. C. Science2007, 316, 1597. doi: 10.1126/science.1141199

    15. [15]

      (15) Binder, J. B.; Raines, R. T. J. Am. Chem. Soc. 2009, 131, 1979.doi: 10.1021/ja808537j

    16. [16]

      (16) Zhang, Z.; Zhao, Z. K. Bioresource Technol. 2010, 101, 1111.doi: 10.1016/j.biortech.2009.09.010

    17. [17]

      (17) Mascal, M.; Nikitin, E. B. Angew. Chem. Int. Edit. 2008, 47,7924. doi: 10.1002/anie.200801594

    18. [18]

      (18) Hu, S.; Zhang, Z.; Song, J.; Zhou, Y.; Han, B. Green Chem.2009, 11, 1746. doi: 10.1039/b914601f

    19. [19]

      (19) Yan, N.; Zhao, C.; Gan,W. J.; Kou, Y. Chin. J. Catal. 2006, 27,1159. [颜宁, 赵晨, 甘维佳, 寇元. 催化学报, 2006, 27,1159.]

    20. [20]

      (20) Yan, N.; Zhao, C.; Luo, C.; Dyson, P. J.; Liu, H.; Kou, Y. J. Am. Chem. Soc. 2006, 128, 8714. doi: 10.1021/ja062468t

    21. [21]

      (21) Pepper, J. M.; Rahman, M. D. Cell. Chem. Technol. 1987, 21,233.

    22. [22]

      (22) Thring, R.W.; Katikaneni, S. P. R.; Bakhshi, N. N. Fuel Process. Technol. 2000, 62, 17. doi: 10.1016/S0378-3820(99)00061-2

    23. [23]

      (23) Jackson, M. A.; Compton, D. L.; Boateng, A. A. J. Anal. Appl. Pyrol. 2009, 85, 226. doi: 10.1016/j.jaap.2008.09.016

    24. [24]

      (24) Stark, K.; Taccardi, N.; Bosmann, A.;Wasserscheid, P.ChemSusChem 2010, 3, 719. doi: 10.1002/cssc.200900242

    25. [25]

      (25) Zakzeski, J.; Bruijnincx, P. C. A.; Jongerius, A. L.;Weckhuysen,B. M. Chem. Rev. 2010, 110, 3552. doi: 10.1021/cr900354u

    26. [26]

      (26) Yan, N.; Zhao, C.; Dyson, P. J.;Wang, C.; Liu, L. T.; Kou, Y.ChemSusChem 2008, 1, 626. doi: 10.1002/cssc.200800080

    27. [27]

      (27) Zhao, C.; Kou, Y.; Lemonidou, A. A.; Li, X.; Lercher, J. A.Angew. Chem. Int. Edit. 2009, 48, 3987. doi: 10.1002/anie.200900404

    28. [28]

      (28) Zhao, C.; Kou, Y.; Lemonidou, A. A.; Li, X.; Lercher, J. A.Chem. Commun. 2010, 46, 412.

    29. [29]

      (29) Zhao, C.; He, J.; Lemonidou, A. A.; Li, X.; Lercher, J. A.J. Catal. 2011, 280, 8. doi: 10.1016/j.jcat.2011.02.001

    30. [30]

      (30) Yan, N.; Yuan, Y.; Dykeman, R.; Kou, Y.; Dyson, P. J. Angew. Chem. Int. Edit. 2010, 49, 5549. doi: 10.1002/anie.201001531

    31. [31]

      (31) Pepper, J. M.; Siddiqueullah, M. Can. J. Chem. 1961, 39, 1454.doi: 10.1139/v61-185

    32. [32]

      (32) Derkacheva, O.; Sukhov, D. Macromol. Symp. 2008, 265, 61.doi: 10.1002/masy.200850507

    33. [33]

      (33) He, J. X.; Zhang,W.; Li, K. J.; Cui, S. Z.;Wang, S. Y. J. Text. Res. 2009, 30, 13. [何建新, 章伟, 李克兢, 崔世忠, 王善元.纺织学报, 2009, 30, 13.]

    34. [34]

      (34) Jung, H. J. G.; Himmelsbach, D. S. J. Agric. Food Chem. 1989,81.

    35. [35]

      (35) Zhang, A. P.; Liu, C. F.; Sun, R. C. Ind. Crop. Prod. 2010, 31,357. doi: 10.1016/j.indcrop.2009.12.003

    36. [36]

      (36) Faix, O. Holzforschung 1991, 45 (Suppl.), 21.

    37. [37]

      (37) Dorris, G. M.; Gray, D. G. Cell. Chem. Technol. 1978, 12, 9.


    1. [1]

      (1) Huber, G.W.; Iborra, S.; Corma, A. Chem. Rev. 2006, 106, 4044.doi: 10.1021/cr068360d

    2. [2]

      (2) Huber, G.W.; Chheda, J. N.; Barrett, C. J.; Dumesic, J. A.Science 2005, 308, 1446.

    3. [3]

      (3) Rinaldi, R.; Palkovits, R.; Schueth, F. Angew. Chem. Int. Edit.2008, 47, 8047. doi: 10.1002/anie.200802879

    4. [4]

      (4) Deng, L.; Li, J.; Lai, D. M.; Fu, Y.; Guo, Q. X. Angew. Chem. Int. Edit. 2009, 48, 6529. doi: 10.1002/anie.200902281

    5. [5]

      (5) Bond, J. Q.; Alonso, D. M.;Wang, D.;West, R. M.; Dumesic, J.A. Science 2010, 327, 1110. doi: 10.1126/science.1184362

    6. [6]

      (6) Bozell, J. J. Science 2010, 329, 522. doi: 10.1126/science.1191662

    7. [7]

      (7) Geilen, F. M. A.; Engendahl, B.; Harwardt, A.; Marquardt,W.;Klankermayer, J.; Leitner,W. Angew. Chem. Int. Edit. 2010, 49,5510. doi: 10.1002/anie.201002060

    8. [8]

      (8) Corma, A.; de la Torre, O.; Renz, M.; Villandier, N. Angew. Chem. Int. Edit. 2011, 50, 2375.

    9. [9]

      (9) Du, X. L.; He, L.; Zhao, S.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan,K. N. Angew. Chem. Int. Edit. 2011, 50, 7815. doi: 10.1002/anie.201100102

    10. [10]

      (10) Rackemann, D.W.; Doherty,W. O. S. Biofuel. Bioprod. Bior.2011, 5, 198. doi: 10.1002/bbb.267

    11. [11]

      (11) Fukuoka, A.; Dhepe, P. L. Angew. Chem. Int. Edit. 2006, 45,5161. doi: 10.1002/anie.200601921

    12. [12]

      (12) Luo, C.;Wang, S.; Liu, H. Angew. Chem. Int. Edit. 2007, 46,7636. doi: 10.1002/anie.200702661

    13. [13]

      (13) Ji, N.; Zhang, T.; Zheng, M.;Wang, A.;Wang, H.;Wang, X.;Chen, J. G. Angew. Chem. Int. Edit. 2008, 47, 8510. doi: 10.1002/anie.200803233

    14. [14]

      (14) Zhao, H.; Holladay, J. E.; Brown, H.; Zhang, Z. C. Science2007, 316, 1597. doi: 10.1126/science.1141199

    15. [15]

      (15) Binder, J. B.; Raines, R. T. J. Am. Chem. Soc. 2009, 131, 1979.doi: 10.1021/ja808537j

    16. [16]

      (16) Zhang, Z.; Zhao, Z. K. Bioresource Technol. 2010, 101, 1111.doi: 10.1016/j.biortech.2009.09.010

    17. [17]

      (17) Mascal, M.; Nikitin, E. B. Angew. Chem. Int. Edit. 2008, 47,7924. doi: 10.1002/anie.200801594

    18. [18]

      (18) Hu, S.; Zhang, Z.; Song, J.; Zhou, Y.; Han, B. Green Chem.2009, 11, 1746. doi: 10.1039/b914601f

    19. [19]

      (19) Yan, N.; Zhao, C.; Gan,W. J.; Kou, Y. Chin. J. Catal. 2006, 27,1159. [颜宁, 赵晨, 甘维佳, 寇元. 催化学报, 2006, 27,1159.]

    20. [20]

      (20) Yan, N.; Zhao, C.; Luo, C.; Dyson, P. J.; Liu, H.; Kou, Y. J. Am. Chem. Soc. 2006, 128, 8714. doi: 10.1021/ja062468t

    21. [21]

      (21) Pepper, J. M.; Rahman, M. D. Cell. Chem. Technol. 1987, 21,233.

    22. [22]

      (22) Thring, R.W.; Katikaneni, S. P. R.; Bakhshi, N. N. Fuel Process. Technol. 2000, 62, 17. doi: 10.1016/S0378-3820(99)00061-2

    23. [23]

      (23) Jackson, M. A.; Compton, D. L.; Boateng, A. A. J. Anal. Appl. Pyrol. 2009, 85, 226. doi: 10.1016/j.jaap.2008.09.016

    24. [24]

      (24) Stark, K.; Taccardi, N.; Bosmann, A.;Wasserscheid, P.ChemSusChem 2010, 3, 719. doi: 10.1002/cssc.200900242

    25. [25]

      (25) Zakzeski, J.; Bruijnincx, P. C. A.; Jongerius, A. L.;Weckhuysen,B. M. Chem. Rev. 2010, 110, 3552. doi: 10.1021/cr900354u

    26. [26]

      (26) Yan, N.; Zhao, C.; Dyson, P. J.;Wang, C.; Liu, L. T.; Kou, Y.ChemSusChem 2008, 1, 626. doi: 10.1002/cssc.200800080

    27. [27]

      (27) Zhao, C.; Kou, Y.; Lemonidou, A. A.; Li, X.; Lercher, J. A.Angew. Chem. Int. Edit. 2009, 48, 3987. doi: 10.1002/anie.200900404

    28. [28]

      (28) Zhao, C.; Kou, Y.; Lemonidou, A. A.; Li, X.; Lercher, J. A.Chem. Commun. 2010, 46, 412.

    29. [29]

      (29) Zhao, C.; He, J.; Lemonidou, A. A.; Li, X.; Lercher, J. A.J. Catal. 2011, 280, 8. doi: 10.1016/j.jcat.2011.02.001

    30. [30]

      (30) Yan, N.; Yuan, Y.; Dykeman, R.; Kou, Y.; Dyson, P. J. Angew. Chem. Int. Edit. 2010, 49, 5549. doi: 10.1002/anie.201001531

    31. [31]

      (31) Pepper, J. M.; Siddiqueullah, M. Can. J. Chem. 1961, 39, 1454.doi: 10.1139/v61-185

    32. [32]

      (32) Derkacheva, O.; Sukhov, D. Macromol. Symp. 2008, 265, 61.doi: 10.1002/masy.200850507

    33. [33]

      (33) He, J. X.; Zhang,W.; Li, K. J.; Cui, S. Z.;Wang, S. Y. J. Text. Res. 2009, 30, 13. [何建新, 章伟, 李克兢, 崔世忠, 王善元.纺织学报, 2009, 30, 13.]

    34. [34]

      (34) Jung, H. J. G.; Himmelsbach, D. S. J. Agric. Food Chem. 1989,81.

    35. [35]

      (35) Zhang, A. P.; Liu, C. F.; Sun, R. C. Ind. Crop. Prod. 2010, 31,357. doi: 10.1016/j.indcrop.2009.12.003

    36. [36]

      (36) Faix, O. Holzforschung 1991, 45 (Suppl.), 21.

    37. [37]

      (37) Dorris, G. M.; Gray, D. G. Cell. Chem. Technol. 1978, 12, 9.


  • 加载中
    1. [1]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    2. [2]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    3. [3]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    4. [4]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    5. [5]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    6. [6]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    7. [7]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    10. [10]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    11. [11]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    12. [12]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    13. [13]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    14. [14]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    15. [15]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    16. [16]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    17. [17]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    18. [18]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    19. [19]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    20. [20]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

Metrics
  • PDF Downloads(810)
  • Abstract views(2390)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return