Citation: ZHANG Rong-Bin, LIANG Lei, ZENG Xian-Rong, SHANG Jin-Yan, WANG Tao, CAI Jian-Xin. Catalytic Properties of Ni /MWCNT and La-Promoted Ni /MWCNT for Methanation of Carbon Dioxide Reaction[J]. Acta Physico-Chimica Sinica, ;2012, 28(08): 1951-1956. doi: 10.3866/PKU.WHXB201206041 shu

Catalytic Properties of Ni /MWCNT and La-Promoted Ni /MWCNT for Methanation of Carbon Dioxide Reaction

  • Received Date: 20 February 2012
    Available Online: 4 June 2012

    Fund Project: 国家自然科学基金(21166018) (21166018)江西省教育厅科技项目(GJJ10291)资助 (GJJ10291)

  • Nickel multiwalled carbon nanotubes (Ni/MWCNT) and lanthanum-promoted Ni/MWCNT were successfully synthesized by impregnation. Methanation of carbon dioxide was used as a probe to evaluate their catalytic performance. N2-BET, temperature programmed reduction (TPR), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to study the advantageous effects of La on the structure, surface composition, reduction properties and reaction performance of Ni/MWCNT. It was found that La-promoted Ni/MWCNT catalysts showed better catalytic activity for the reaction than the un-promoted. The addition of La to Ni/MWCNT improves the concentration and dispersion of the active NiO component on the catalyst surface, thus weakening the interaction between support and NiO species, which in turn improves the electron density at the NiO species. As a consequence, the adsorption of reactants was enhanced and the activity improved. Moreover, the sequence in which La was added was also studied in this work. Ni-La/MWCNT, in which La was impregnated onto the MWCNT first, shows better catalytic performance than La-Ni/MWCNT, where the Ni was impregnated first.

  • 加载中
    1. [1]

      (1) Bai, M. G.; Tao, X. M.;Wu, Q. Y.; Huang, Z. J.; Li, Y. L.; Yin,Y. X.; Dai, X. Y. Acta Phys. -Chim. Sin. 2009, 25, 2455. [白玫瑰, 陶旭梅, 吴青友, 黄志军, 李育亮, 印永祥, 戴晓雁. 物理化学学报, 2009, 25, 2455.] doi: 10.3866/PKU.WHXB20091207

    2. [2]

      (2) Chen, J. X.; Qiu, Y. J.; Zhang, J. Y.; Su,W. H. Acta Phys. -Chim. Sin. 2004, 20, 76. [陈吉祥, 邱业君, 张继炎, 苏万华. 物理化学学报, 2004, 20, 76.] doi: 10.3866/PKU.WHXB20040116

    3. [3]

      (3) Wu, Y.; Chan, C.W. Expert Syst. Appl. 2009, 36, 9949. doi: 10.1016/j.eswa.2009.01.064

    4. [4]

      (4) Alphen, K.; van Rujiven, J.; Kasa, S.; Hekkert, M.; Turkenburg,W. Energy Policy 2009, 37, 43. doi: 10.1016/j.enpol.2008.07.029

    5. [5]

      (5) Walspurger, S.; Boels, L.; Cobden, P. D.; Eizinga, G. D.; Haije,W. G.; van den Brink, R.W. ChemSusChem. 2008, No. 1, 643.

    6. [6]

      (6) Song, C. S. Catal. Today 2006, 115(1-4), 2. doi: 10.1016/j.cattod.2006.02.029

    7. [7]

      (7) Omae, I. Catal. Today 2006, 115 (1-4), 33.

    8. [8]

      (8) Guo, X. M.; Mao, D. S.; Lu, G. Z.;Wang, S. Acta Phys. -Chim. Sin. 2012, 28, 170. [郭晓明, 毛东森, 卢冠忠, 王嵩. 物理化学学报, 2012, 28, 170.] doi: 10.3866/PKU.WHXB201228170

    9. [9]

      (9) Peebles, D. E.; odman, J. M.; White, J. M. J. Phys. Chem.1983, 87 (22), 4378.

    10. [10]

      (10) Yamasaki, M. H.; Habazaki, H.; Asami, K.; Izumiya, K.;Hashimoto, K. Catal. Commun. 2006, 7 (1), 24. doi: 10.1016/j.catcom.2005.08.005

    11. [11]

      (11) Melián-Cabrera, I.; Granados, M. L.; Fierro, J. L. G. J. Catal.2002, 210 (2), 273.

    12. [12]

      (12) Inui, T.; Takeguchi, T. Catal. Today 1991, 10 (1), 95. doi: 10.1016/0920-5861(91)80077-M

    13. [13]

      (13) Chang, F.W.; Kuo, M. S.; Tsay, M. T.; Hsieh, M. C. Appl. Catal. A 2003, 247 (2), 309.

    14. [14]

      (14) Du, G.; Lim, S.; Yang, Y.;Wang, C.; Pfefferle, L.; Haller, G. L.J. Catal. 2007, 249 (2), 370. doi: 10.1016/j.jcat.2007.03.029

    15. [15]

      (15) Liu, X. H.; Miao, Y.; Li, X. L.; Sheng, S. S. Acta Phys. -Chim. Sin. 1995, 11, 746. [刘新华, 苗茵, 李晓丽, 盛世善. 物理化学学报, 1995, 11, 746.] doi: 10.3866/PKU.WHXB19950816

    16. [16]

      (16) Vance, C. K.; Bartholomew, C. H. Appl. Catal. 1983, 7, 169.doi: 10.1016/0166-9834(83)80005-0

    17. [17]

      (17) Tang, Y. C.; Yang, D.; Qin, F.; Hu, J. H. J. Solid State Chem.2009, 182 (8), 2279. doi: 10.1016/j.jssc.2009.05.036

    18. [18]

      (18) Li,W.; Liang, C.; Zhou,W.; Qiu, J.; Zhou, Z.; Sun, G.; Xin, Q.J. Phys. Chem. B 2003, 107 (28), 6292.

    19. [19]

      (19) Yang, S. D.; Zhang, X. G.; Huang, J. S.; Sun, J. Y. Acta Phys. -Chim. Sin. 2007, 23, 1224. [杨苏东, 张校刚, 黄建书,孙景玉. 物理化学学报, 2007, 23, 1224.] doi: 10.3866/PKU.WHXB20070816

    20. [20]

      (20) Jin, Y. X.; Liu, Z. J.; Chen,W. X.; Xu, Z. D. Acta Phys. -Chim. Sin. 2002, 18, 459. [金亚旭, 刘宗健, 陈卫祥, 徐铸德. 物理化学学报, 2002, 18, 459.] doi: 10.3866/PKU.WHXB20020516

    21. [21]

      (21) He, Q. G.; Yuan, X. Z.; Yuan, X. X.; Ma, Z. F. Electrochemistry2004, 10, 51. [和庆钢, 袁晓姿, 原鲜霞, 马紫峰. 电化学,2004, 10, 51.]

    22. [22]

      (22) Wang,W. D.; Philippe, S.; Philippe, K.; Joaquim, L. F. J. Mol. Catal. A: Chem. 2005, 235, 194. doi: 10.1016/j.molcata.2005.02.027

    23. [23]

      (23) Chaudhary, S.; Kim, J. H.; Singh, K. V.; Ozkan, M. Nano Lett.2004, 4, 2415. doi: 10.1021/nl048498g

    24. [24]

      (24) Song, H. L.; Yang, J.; Zhao, J.; Chou, L. J. Chin. J. Catal. 2010,31, 21. [宋焕玲, 杨建, 赵军, 丑凌军. 催化学报, 2010,31, 21.] doi: 10.1016/S1872-2067(09)60036-X

    25. [25]

      (25) Cao, L. X.; Chen, Y. X.; Li,W. Z. Nat. Gas Chem. Industry1996, 21, 22. [曹立新, 陈燕馨, 李文钊. 天然气化工, 1996,21, 22.]

    26. [26]

      (26) Qiu, Y. J.; Chen, J. X.; Zhang, J. Y. J. Fuel Chem. Tech. 2006,34, 450. [邱业君, 陈吉祥, 张继炎. 燃料化学学报, 2006, 34,450.]

    27. [27]

      (27) Gao, J.; Hou, Z. Y.; Guo, J. Z.; Zhu, Y. H.; Zheng, X. M. Catal. Today 2008, 131, 278. doi: 10.1016/j.cattod.2007.10.019

    28. [28]

      (28) Zhang, Y. H.; Xiong, G. X.; Sheng, S. S.; Liu, S. L.; Yang,W. S.Acta Phys. -Chim. Sin. 1999, 15, 735. [张玉红, 熊国兴, 盛世善, 刘盛林, 杨维慎. 物理化学学报, 1999, 15, 735.] doi: 10.3866/PKU.WHXB19990813

    29. [29]

      (29) Luo, L. T.; Li, S. J.; Feng, G. F.; Li, F. Y. React. Kinet. Catal. Lett. 2002, 75 (2), 289.

    30. [30]

      (30) Deng, G. F.; Guo, N. X.; Luo, L. T.; Li, F. Y. J. Chin. Rare Earth2002, 23, 18. [邓庚凤, 郭年祥, 罗来涛, 李凤仪. 稀土, 2002,23, 18.]

    31. [31]

      (31) Chen, R. T.; Deng, G. C.; Jiang, Q. Chem. Res. Appl. 1995,No. 1, 1. [陈荣梯, 邓国才, 江琦. 化学研究与应用, 1995,No. 1, 1.]


  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    3. [3]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    7. [7]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    8. [8]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    11. [11]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    18. [18]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    20. [20]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

Metrics
  • PDF Downloads(748)
  • Abstract views(2732)
  • HTML views(99)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return