Citation: LIU Jian-Guo, DING Ming-Yue, WANG Tie-Jun, MA Long-Long. Structure and Performance of Cu-Fe Bimodal Support for Higher Alcohol Syntheses[J]. Acta Physico-Chimica Sinica, ;2012, 28(08): 1964-1970. doi: 10.3866/PKU.WHXB201205213
-
Copper-iron modified bimodal support (M) with different mass fractions of Cu and Fe elements were prepared by an ultrasonic impregnation method. The catalytic performance for higher alcohol syntheses (HAS) was investigated in a fixed-bed flow reactor. Several techniques, including N2 physical adsorption, temperature-programmed reduction/desorption of hydrogen, (H2-TPR/TPD) and X-ray diffraction (XRD) were used to characterize the catalysts. The results indicated that the bimodal pore support was formed by the addition of small-pore silica sol into the macroporous silica gel. Increased amounts of small pore silica sol caused a decrease in pore size in the bimodal carrier. An increase in the Fe/Cu molar ratio facilitated the dispersion of CuO, promoted the reduction of CuO and Fe2O3 on the surface layers, and enhanced the interaction between the copper and iron species as well as the bimodal support inside the large pores. The copper was well-dispersed on the catalyst and the amount of iron carbides formed was high in catalysts with a high Fe/Cu molar ratio. Increasing the Fe/Cu mass ratio promoted the catalytic activity and thus facilitated the synthesis of higher alcohols. When the Fe/Cu molar ratio was increased to 30/20, the CO conversion and the yield of higher alcohols increased to 46% and 0.21 g·mL-1·h-1, respectively. At the same time, the mass ratio of C2+OH/CH3OH reached 1.96.
-
-
[1]
(1) Herman, R. G. Catal. Today 2000, 55, 233. doi: 10.1016/S0920-5861(99)00246-1
-
[2]
(2) He, D. P.; Ding, Y. J.; Luo, H.Y.; Li, C. J. Mol.Catal. A:Chem.2004, 208, 267. doi: 10.1016/S1381-1169(03)00542-9
-
[3]
(3) Tronconi, E.; Lietti, L.; Forzatti, P.; Pasquon, I. Appl. Catal.1989, 47, 317. doi: 10.1016/S0166-9834(00)83237-6
-
[4]
(4) Mahdavi, V.; Peyrovi, M. H. Catal. Commun. 2006, 7, 542. doi: 10.1016/j.catcom.2006.01.012
-
[5]
(5) Xiao, H. C.; Li, D. B.; Li,W. H.; Sun, Y. H. Fuel Process. Technol. 2010, 91, 383. doi: 10.1016/j.fuproc.2009.07.004
-
[6]
(6) Courty, P.; Durand, D.; Freund, E.; Sugier, A. J. Mol. Catal.1982, 17, 241. doi: 10.1016/0304-5102(82)85035-9
-
[7]
(7) Subramanian, N. D.; Balaji, G.; Kumar, C. S. S. R.; Spivey,J. J. Catal. Today 2009, 147, 100. doi: 10.1016/j.cattod.2009.02.027
-
[8]
(8) Boz, I.; Sahibzada, M.; Metcalfe, I. S. Ind. Eng. Chem. Res.1994, 33, 2021. doi: 10.1021/ie00033a001
-
[9]
(9) Pour, A. N.; Zamani, Y.; Tavasoli, A.; Shahri, S. M. K.; Taheri,S. A. Fuel 2008, 87, 2004. doi: 10.1016/j.fuel.2007.10.014
-
[10]
(10) Bukur, D. B.; Lang, X. S. Ind. Eng. Chem. Res. 1999, 38, 3270.doi: 10.1021/ie990028n
-
[11]
(11) Sibillia, J. A.; Dominguez, J. M.; Herman, R. G.; Klier, K.Prepr. Div. Fuel Chem. ACS 1984, 29, 261.
-
[12]
(12) Xu, R.; Yang, C.;Wei,W.; Li,W. H.; Sun, Y. H.; Hu, T. D.J. Mol.Catal. A: Chem. 2004, 221, 51. doi: 10.1016/j.molcata.2004.07.003
-
[13]
(13) Xu, R.; Ma, Z. Y.; Yang, C.;Wei,W.; Sun, Y. H. React. Kinet. Catal. Lett. 2004, 81, 91. doi: 10.1023/B:REAC.0000016521.91502.5f
-
[14]
(14) Zhang, Y.; Yoneyama, Y.; Tsubaki, N. Chem. Commun. 2002,1216.
-
[15]
(15) Zhang, Y.; Koike, M.; Yang, R. Q.; Hinchiranan, S.; Vitidsant,T.; Tsubaki, N. Appl. Catal. A 2005, 292, 252. doi: 10.1016/j.apcata.2005.06.004
-
[16]
(16) Xu, B. L.; Fan, Y. N.; Zhang, Y.; Tsubaki, N. AIChE Journal2005, 51, 2068. doi: 10.1002/aic.10469
-
[17]
(17) Inui, T.; Funabiki, M.; Suehiro, M.; Sezume, T. J. Chem. Soc. FaradayTrans. 1979, 75, 787.
-
[18]
(18) Yang, Y.; Tao, Z. C.; Zhang, C. H.;Wang, H.; Tian, L.; Xu, Y.Y.; Xiang, H.W.; Li, Y.W. J. Fuel Chem. Technol. 2004, 32,717. [杨勇, 陶智超, 张成华, 王洪, 田磊, 徐元源,相宏伟, 李永旺. 燃料化学学报, 2004, 32, 717.]
-
[19]
(19) Zhang, Y.; Zhang, C. M.; Lu, F.; Li, Y.W.; Sun, Y. H.; Zhong, B.J. Fuel Chem. Technol. 2000, 28, 244. [张业, 张池明, 陆凡, 李永旺, 孙予罕, 钟炳. 燃料化学学报, 2000, 28, 244.]
-
[20]
(20) Burch, R.; Chappell, R. J. Appl. Catal. 1988, 45, 131. doi: 10.1016/S0166-9834(00)82398-2
-
[21]
(21) Burch, R.; lunski, S. E.; Spencer, M. S. J. Chem. Soc. Faraday Trans. 1990, 86, 2683. doi: 10.1039/ft9908602683
-
[22]
(22) Ding, M.Y.; Yang, Y.; Xu, J.; Tao, Z. C.;Wang, H. L.;Wang, H.;Xiang, H.W.; Li, Y.W. Appl. Catal. A 2008, 345, 176. doi: 10.1016/j.apcata.2008.04.036
-
[1]
-
-
[1]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[2]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[3]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[4]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[5]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[6]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[7]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[8]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[9]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[10]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[11]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[12]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[13]
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
-
[14]
Siyao Zhan , Yajiao Wang , Zhihuan Cai , Ayizhada Maimaitiyumier , Tilan Duan , Xiangfeng Wei , Qi Wang , Jiehua Liu , Xianghua Kong . Exploration of the Chemical Elements across Time and Space. University Chemistry, 2024, 39(9): 5-10. doi: 10.12461/PKU.DXHX202403071
-
[15]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[16]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[17]
Yongpo Zhang , Xinfeng Li , Yafei Song , Mengyao Sun , Congcong Yin , Chunyan Gao , Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092
-
[18]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[19]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[20]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[1]
Metrics
- PDF Downloads(849)
- Abstract views(2301)
- HTML views(36)