Citation: LIN Xue, Lü Peng, GUAN Qing-Feng, LI Hai-Bo, LI Hong-Ji, CAI Jie, ZOU Yang. Visible Light Photocatalytic Properties of Bi3.25La0.75Ti3O12 Nanowires[J]. Acta Physico-Chimica Sinica, ;2012, 28(08): 1978-1984. doi: 10.3866/PKU.WHXB201205172 shu

Visible Light Photocatalytic Properties of Bi3.25La0.75Ti3O12 Nanowires

  • Received Date: 9 April 2012
    Available Online: 17 May 2012

    Fund Project:

  • Lanthanum-doped bismuth titanate (Bi3.25La0.75Ti3O12, BLT) nanowires were synthesized by a one-step hydrothermal process and their optical and photocatalytic properties were investigated. Their crystal structure and microstructures were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The BLT nanowires obtained are single-phase with an average diameter of 25 nm. The room temperature photoluminescence (PL) spectrum reveals two visible emission peaks at 400 and 596 nm, which are assigned to excitonic and surface-defect emissions, respectively. The UV-visible diffuse reflectance spectrum (UV-Vis DRS) reveals that the band gap of BLT nanowires is 2.07 eV. The prepared BLT nanowires are stable and exhibit higher photocatalytic activities in the degradation of methyl orange (MO) under visible light irradiation (λ >420 nm) compared with commercial P25 TiO2, traditional N-doped TiO2 (N-TiO2), and pure bismuth titanate (Bi4Ti3O12, BIT). The high photocatalytic performance of BLT photocatalysts is attributed to the strong visible light absorption and the recombination restraint of the e-/h+ pairs resulting from the presence of La3+ ions.


    1. [1]

      (1) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0

    2. [2]

      (2) Lu, S.Y.;Wu, D.;Wang, Q. L.; Yan, J. H.; Buekens, A. G.; Cen,K. F. Chemosphere 2011, 82, 1215. doi: 10.1016/j.chemosphere.2010.12.034

    3. [3]

      (3) Xie, J.;Wang, H.; Duan, M. Acta Phys. -Chim. Sin. 2011, 27 (1),193. [谢娟, 王虎, 段明. 物理化学学报, 2011, 27 (1),193.] doi: 10.3866/PKU.WHXB20110124

    4. [4]

      (4) Yang, X. H.; Liu, C.; Liu, J. K.; Zhu, Z. C. Acta Phys. -Chim. Sin. 2011, 27 (12), 2939. [杨小红, 刘畅, 刘金库, 朱子春.物理化学学报, 2011, 27 (12), 2939.] doi: 10.3866/PKU.WHXB20112939

    5. [5]

      (5) Hu, Y. F.; Li, Y. X.; Peng, S. Q.; Lü, G. X.; Li, S. B. Acta Phys. -Chim. Sin. 2008, 24 (11), 2071. [胡元方, 李越湘, 彭绍琴, 吕功煊, 李树本. 物理化学学报, 2008, 24 (11), 2071.]doi: 10.3866/PKU.WHXB20081123

    6. [6]

      (6) Zhang, L. S.;Wang, H. L.; Chen, Z. G.;Wong, P. K.; Liu, J. S.Appl. Catal. B: Environ. 2011, 106, 1.

    7. [7]

      (7) Zhang, L.; Cao, X. F.; Chen, X. T.; Xue, Z. L. J. Colloid Interface Sci. 2011, 354, 630. doi: 10.1016/j.jcis.2010.11.042

    8. [8]

      (8) Selishchev, D. S.; Kolinko, P. A.; Kozlov, D. V. J. Photochem. Photobiol. A 2012, 229, 11. doi: 10.1016/j.jphotochem.2011.12.006

    9. [9]

      (9) Zhang, J.W.; Jin, Z. S.; Feng, C. X.; Yu, L. G.; Zhang, J.W.;Zhang, Z. J. J. Solid State Chem. 2011, 184, 3066. doi: 10.1016/j.jssc.2011.09.016

    10. [10]

      (10) Su, Y. R.; Yu, J. G.; Lin, J. J. Solid State Chem. 2007, 180, 2080.doi: 10.1016/j.jssc.2007.04.028

    11. [11]

      (11) Xu, J.;Wang,W. Z.; Shang, M.; Gao, E. P.; Zhang, Z. J.; Ren, J.J. Hazard. Mater. 2011, 196, 426. doi: 10.1016/j.jhazmat.2011.09.010

    12. [12]

      (12) Wang, H. Q.;Wu, Z. B.; Liu, Y.;Wang, Y. J. Chemosphere 2008,74, 773.

    13. [13]

      (13) Xu, J. J.; Chen, M. D.; Fu, D. G. Appl. Surf. Sci. 2011, 257,7381. doi: 10.1016/j.apsusc.2011.02.030

    14. [14]

      (14) Ghorai, T. K.; Biswas, S. K.; Pramanik, P. Appl. Surf. Sci. 2008,254, 7498. doi: 10.1016/j.apsusc.2008.06.042

    15. [15]

      (15) Zhang, Y. L.; Deng, L. J.; Zhang, G. K.; Gan, H. H. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2011, 384, 137.doi: 10.1016/j.colsurfa.2011.03.043

    16. [16]

      (16) Zhang, H. P.; Lü, M. K.; Liu, S.W.; Xiu, Z. L.; Zhou, G. J.;Zhou, Y. Y.; Qiu, Z. F.; Zhang, A. Y.; Ma, Q. Surf. Coat. Tech.2008, 202, 4930. doi: 10.1016/j.surfcoat.2008.04.081

    17. [17]

      (17) Hou, J. G.; Jiao, S. Q.; Zhu, H. M.; Kumar, R. V. J. Solid State Chem. 2011, 184, 154. doi: 10.1016/j.jssc.2010.11.017

    18. [18]

      (18) Kudo, A.; Hijii, S. Chem. Lett. 1999, 28 (10), 1103.

    19. [19]

      (19) Yao,W. F.; Xu, X. H.;Wang, H.; Zhou, J. T.; Yang, X. N.;Zhang, Y.; Shang, S. X.; Huang, B. B. Appl. Catal. B: Environ.2004, 52, 109. doi: 10.1016/j.apcatb.2004.04.002

    20. [20]

      (20) Yao,W. F.;Wang, H.; Xu, X. H.; Shang, S. X.; Hou, Y.; Zhang,Y.;Wang, M. Mater. Lett. 2003, 57, 1899. doi: 10.1016/S0167-577X(02)01097-2

    21. [21]

      (21) Lin, X.; Lv, P.; Guan, Q. F.; Li, H. B.; Zhai, H. J.; Liu, C. B.Appl. Surf. Sci. 2012, 258, 7146. doi: 10.1016/j.apsusc.2012.04.019

    22. [22]

      (22) Wang, Z. Z.; Qi, Y. J.; Qi, H. Y.; Lu, C. J.;Wang, S. M. J. Mater. Sci.: Mater. Electron 2010, 21, 523. doi: 10.1007/s10854-009-9950-z

    23. [23]

      (23) Yao,W. F.;Wang, H.; Shang, S. X.; Xu, X. H.; Yang, X. N.;Zhang, Y.;Wang, M. J. Mol. Catal. A: Chem. 2003, 198, 343.doi: 10.1016/S1381-1169(02)00699-4

    24. [24]

      (24) Lin, X.; Guan, Q. F.; Li, H. B.; Li, H. J.; Ba, C. H.; Deng, H. D.Acta Phys. -Chim. Sin. 2012, 28 (6), 1481. [林雪, 关庆丰,李海波, 李洪吉, 巴春华, 邓海德. 物理化学学报, 2012, 28 (6),1481.] doi: 10.3866/PKU.WHXB201203313

    25. [25]

      (25) Lin, X.; Guan, Q. F.; Li, H. B.; Liu, Y.; Zou, G. T. Sci. China Ser. G 2012, 55, 33. [林雪, 关庆丰, 李海波, 刘洋, 邹广田. 中国科学G, 2012, 55, 33.] doi: 10.1007/s11433-011-4574-8

    26. [26]

      (26) Xu, G. C.; Pan, L.; Guan, Q. F.; Zou, G. T. Acta Phys. Sin. 2006,55, 3080. [徐国成, 潘玲, 关庆丰, 邹广田. 物理学报,2006, 55, 3080.]

    27. [27]

      (27) Yang, J. H.; Zheng, J. H.; Zhai, H. J.; Yang, L. L.; Lang, J. H.;Gao, M. J. Alloy. Compd. 2009, 481, 628. doi: 10.1016/j.jallcom.2009.03.108

    28. [28]

      (28) Li, L.; Yang, H. Q.; Ma, J. H.; Jia, D. Z. Chin. J. Inorg. Chem.2012, 28 (1), 25. [李丽, 杨合情, 马军虎, 贾殿赠. 无机化学学报, 2012, 28 (1), 25.]

    29. [29]

      (29) Xu, D.; Gao, A. M.; Deng,W. L. Acta Phys. -Chim. Sin. 2008,24 (7), 1219. [许迪, 高爱梅, 邓文礼. 物理化学学报, 2008,24 (7), 1219.] doi: 10.3866/PKU.WHXB20080717

    30. [30]

      (30) Zhu, X. Q.; Zhang, J. L.; Chen, F. Chemosphere 2010, 78, 1350.doi: 10.1016/j.chemosphere.2010.01.002

    31. [31]

      (31) Cheng, H. F.; Huang, B. B.; Dai, Y.; Qin, X. Y.; Zhang, X. Y.;Wang, Z. Y.; Jiang, M. H. J. Solid State Chem. 2009, 182, 2274.doi: 10.1016/j.jssc.2009.06.006

    32. [32]

      (32) Li, B. X.;Wang, Y. F.; Liu, T. X. Acta Phys. -Chim. Sin. 2011,27 (12), 2946. [李本侠, 王艳芬, 刘同宣. 物理化学学报,2011, 27 (12), 2946.] doi: 10.3866/PKU.WHXB20112946

    33. [33]

      (33) to, T.; Noguchi, Y.; Soga, M.; Miyayama, M. Mater. Res. Bull. 2005, 40, 1044. doi: 10.1016/j.materresbull.2005.02.025


    1. [1]

      (1) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0

    2. [2]

      (2) Lu, S.Y.;Wu, D.;Wang, Q. L.; Yan, J. H.; Buekens, A. G.; Cen,K. F. Chemosphere 2011, 82, 1215. doi: 10.1016/j.chemosphere.2010.12.034

    3. [3]

      (3) Xie, J.;Wang, H.; Duan, M. Acta Phys. -Chim. Sin. 2011, 27 (1),193. [谢娟, 王虎, 段明. 物理化学学报, 2011, 27 (1),193.] doi: 10.3866/PKU.WHXB20110124

    4. [4]

      (4) Yang, X. H.; Liu, C.; Liu, J. K.; Zhu, Z. C. Acta Phys. -Chim. Sin. 2011, 27 (12), 2939. [杨小红, 刘畅, 刘金库, 朱子春.物理化学学报, 2011, 27 (12), 2939.] doi: 10.3866/PKU.WHXB20112939

    5. [5]

      (5) Hu, Y. F.; Li, Y. X.; Peng, S. Q.; Lü, G. X.; Li, S. B. Acta Phys. -Chim. Sin. 2008, 24 (11), 2071. [胡元方, 李越湘, 彭绍琴, 吕功煊, 李树本. 物理化学学报, 2008, 24 (11), 2071.]doi: 10.3866/PKU.WHXB20081123

    6. [6]

      (6) Zhang, L. S.;Wang, H. L.; Chen, Z. G.;Wong, P. K.; Liu, J. S.Appl. Catal. B: Environ. 2011, 106, 1.

    7. [7]

      (7) Zhang, L.; Cao, X. F.; Chen, X. T.; Xue, Z. L. J. Colloid Interface Sci. 2011, 354, 630. doi: 10.1016/j.jcis.2010.11.042

    8. [8]

      (8) Selishchev, D. S.; Kolinko, P. A.; Kozlov, D. V. J. Photochem. Photobiol. A 2012, 229, 11. doi: 10.1016/j.jphotochem.2011.12.006

    9. [9]

      (9) Zhang, J.W.; Jin, Z. S.; Feng, C. X.; Yu, L. G.; Zhang, J.W.;Zhang, Z. J. J. Solid State Chem. 2011, 184, 3066. doi: 10.1016/j.jssc.2011.09.016

    10. [10]

      (10) Su, Y. R.; Yu, J. G.; Lin, J. J. Solid State Chem. 2007, 180, 2080.doi: 10.1016/j.jssc.2007.04.028

    11. [11]

      (11) Xu, J.;Wang,W. Z.; Shang, M.; Gao, E. P.; Zhang, Z. J.; Ren, J.J. Hazard. Mater. 2011, 196, 426. doi: 10.1016/j.jhazmat.2011.09.010

    12. [12]

      (12) Wang, H. Q.;Wu, Z. B.; Liu, Y.;Wang, Y. J. Chemosphere 2008,74, 773.

    13. [13]

      (13) Xu, J. J.; Chen, M. D.; Fu, D. G. Appl. Surf. Sci. 2011, 257,7381. doi: 10.1016/j.apsusc.2011.02.030

    14. [14]

      (14) Ghorai, T. K.; Biswas, S. K.; Pramanik, P. Appl. Surf. Sci. 2008,254, 7498. doi: 10.1016/j.apsusc.2008.06.042

    15. [15]

      (15) Zhang, Y. L.; Deng, L. J.; Zhang, G. K.; Gan, H. H. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2011, 384, 137.doi: 10.1016/j.colsurfa.2011.03.043

    16. [16]

      (16) Zhang, H. P.; Lü, M. K.; Liu, S.W.; Xiu, Z. L.; Zhou, G. J.;Zhou, Y. Y.; Qiu, Z. F.; Zhang, A. Y.; Ma, Q. Surf. Coat. Tech.2008, 202, 4930. doi: 10.1016/j.surfcoat.2008.04.081

    17. [17]

      (17) Hou, J. G.; Jiao, S. Q.; Zhu, H. M.; Kumar, R. V. J. Solid State Chem. 2011, 184, 154. doi: 10.1016/j.jssc.2010.11.017

    18. [18]

      (18) Kudo, A.; Hijii, S. Chem. Lett. 1999, 28 (10), 1103.

    19. [19]

      (19) Yao,W. F.; Xu, X. H.;Wang, H.; Zhou, J. T.; Yang, X. N.;Zhang, Y.; Shang, S. X.; Huang, B. B. Appl. Catal. B: Environ.2004, 52, 109. doi: 10.1016/j.apcatb.2004.04.002

    20. [20]

      (20) Yao,W. F.;Wang, H.; Xu, X. H.; Shang, S. X.; Hou, Y.; Zhang,Y.;Wang, M. Mater. Lett. 2003, 57, 1899. doi: 10.1016/S0167-577X(02)01097-2

    21. [21]

      (21) Lin, X.; Lv, P.; Guan, Q. F.; Li, H. B.; Zhai, H. J.; Liu, C. B.Appl. Surf. Sci. 2012, 258, 7146. doi: 10.1016/j.apsusc.2012.04.019

    22. [22]

      (22) Wang, Z. Z.; Qi, Y. J.; Qi, H. Y.; Lu, C. J.;Wang, S. M. J. Mater. Sci.: Mater. Electron 2010, 21, 523. doi: 10.1007/s10854-009-9950-z

    23. [23]

      (23) Yao,W. F.;Wang, H.; Shang, S. X.; Xu, X. H.; Yang, X. N.;Zhang, Y.;Wang, M. J. Mol. Catal. A: Chem. 2003, 198, 343.doi: 10.1016/S1381-1169(02)00699-4

    24. [24]

      (24) Lin, X.; Guan, Q. F.; Li, H. B.; Li, H. J.; Ba, C. H.; Deng, H. D.Acta Phys. -Chim. Sin. 2012, 28 (6), 1481. [林雪, 关庆丰,李海波, 李洪吉, 巴春华, 邓海德. 物理化学学报, 2012, 28 (6),1481.] doi: 10.3866/PKU.WHXB201203313

    25. [25]

      (25) Lin, X.; Guan, Q. F.; Li, H. B.; Liu, Y.; Zou, G. T. Sci. China Ser. G 2012, 55, 33. [林雪, 关庆丰, 李海波, 刘洋, 邹广田. 中国科学G, 2012, 55, 33.] doi: 10.1007/s11433-011-4574-8

    26. [26]

      (26) Xu, G. C.; Pan, L.; Guan, Q. F.; Zou, G. T. Acta Phys. Sin. 2006,55, 3080. [徐国成, 潘玲, 关庆丰, 邹广田. 物理学报,2006, 55, 3080.]

    27. [27]

      (27) Yang, J. H.; Zheng, J. H.; Zhai, H. J.; Yang, L. L.; Lang, J. H.;Gao, M. J. Alloy. Compd. 2009, 481, 628. doi: 10.1016/j.jallcom.2009.03.108

    28. [28]

      (28) Li, L.; Yang, H. Q.; Ma, J. H.; Jia, D. Z. Chin. J. Inorg. Chem.2012, 28 (1), 25. [李丽, 杨合情, 马军虎, 贾殿赠. 无机化学学报, 2012, 28 (1), 25.]

    29. [29]

      (29) Xu, D.; Gao, A. M.; Deng,W. L. Acta Phys. -Chim. Sin. 2008,24 (7), 1219. [许迪, 高爱梅, 邓文礼. 物理化学学报, 2008,24 (7), 1219.] doi: 10.3866/PKU.WHXB20080717

    30. [30]

      (30) Zhu, X. Q.; Zhang, J. L.; Chen, F. Chemosphere 2010, 78, 1350.doi: 10.1016/j.chemosphere.2010.01.002

    31. [31]

      (31) Cheng, H. F.; Huang, B. B.; Dai, Y.; Qin, X. Y.; Zhang, X. Y.;Wang, Z. Y.; Jiang, M. H. J. Solid State Chem. 2009, 182, 2274.doi: 10.1016/j.jssc.2009.06.006

    32. [32]

      (32) Li, B. X.;Wang, Y. F.; Liu, T. X. Acta Phys. -Chim. Sin. 2011,27 (12), 2946. [李本侠, 王艳芬, 刘同宣. 物理化学学报,2011, 27 (12), 2946.] doi: 10.3866/PKU.WHXB20112946

    33. [33]

      (33) to, T.; Noguchi, Y.; Soga, M.; Miyayama, M. Mater. Res. Bull. 2005, 40, 1044. doi: 10.1016/j.materresbull.2005.02.025


  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    3. [3]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    4. [4]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    5. [5]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    6. [6]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    7. [7]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    9. [9]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    10. [10]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    11. [11]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    12. [12]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    13. [13]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    14. [14]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    15. [15]

      Juan CHENGuoyu YANG . A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341

    16. [16]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    17. [17]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    18. [18]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    19. [19]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    20. [20]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(983)
  • Abstract views(2847)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return