Citation: MA Chi-Cheng, PU Min, WEI Min, LI Jun-Nan, LI Zhi-Hong. Two Possible Photoreaction Pathways on the L-Valine Optical Isomerization[J]. Acta Physico-Chimica Sinica, ;2012, 28(08): 1830-1836. doi: 10.3866/PKU.WHXB201205162 shu

Two Possible Photoreaction Pathways on the L-Valine Optical Isomerization

  • Received Date: 27 March 2012
    Available Online: 16 May 2012

    Fund Project: 国家自然科学基金(21173019, 11079041)资助项目 (21173019, 11079041)

  • The photoreaction mechanism of L-valine optical isomerization was studied by the density functional theory (DFT) and ab initio molecular orbital theory. The geometric parameters of reactant, product, intermediates, and transition states on the reaction paths in S0 and T1 states were optimized at the level of B3LYP and MP2 methods and 6-311++G(d, p) basis sets and the reaction energy barriers were obtained by the same methods. The equilibrium geometries on the S1 state of valine were also optimized by the method of time dependent density functional theory (TD-DFT) with B3LYP/6-311++G(d, p) level. Through the analysis of each stationary point geometric feature on the reaction path, the photoreaction mechanisms of L-valine optical isomerization were proposed in which the whole reaction was accomplished through hydrogen transfer with the help of carbonyl O or amino N atom in excited state. Furthermore the effect of solvent on the reaction mechanism of isomers was discussed by the method of polarizable continuum model (PCM) of self consistent reaction field theory.

  • 加载中
    1. [1]

      (1) Minami, M.; Takeyama, M.; Mimura, K.; Nakamura, T. Nucl. Instrum. Methods Phys. Res. Sect. B 2007, 259, 547. doi: 10.1016/j.nimb.2007.01.201

    2. [2]

      (2) Amelung,W.; Zhang, X.; Flach, K.W. Geoderma 2006, 130,207. doi: 10.1016/j.geoderma.2005.01.017

    3. [3]

      (3) Sajdok, J.; Kozak, A.; Zidkova, J.; Kotsba, P.; Pilin, A.; Kas, J.Chem. Listy 2001, 95, 98.

    4. [4]

      (4) Tomiyama, T.; Asano, S.; Furiya, Y.; Shirasawa, T.; Endo, N.;Mori, H. J. Biol. Chem. 1994, 269, 10205.

    5. [5]

      (5) Friedman, M. J. Agric. Food Chem. 1999, 47, 3457. doi: 10.1021/jf990080u

    6. [6]

      (6) Martineau, M.; Baux, G.; Mothet, J. P. J. Physiol. -Paris 2006,99, 103. doi: 10.1016/j.jphysparis.2005.12.011

    7. [7]

      (7) Chu, Y. Q.; Pan, T. T.; Dai, Z. Y.; Yu, Z.W.; Zheng, S. B.; Ding,C. F. Acta Phys. -Chim. Sin. 2008, 24, 1981. [储艳秋, 潘婷婷,戴兆云, 俞卓伟, 郑松柏, 丁传凡. 物理化学学报, 2008, 24,1981.] doi: 10.3866/PKU.WHXB20081108

    8. [8]

      (8) Qi, J. Studies on Configuration Transformation of L-Proline andL-Valine. M.S. Dissertation, Nanchang University, Jiangxi,2006. [漆剑. L-脯氨酸和L-缬氨酸构型转换的研究[D].南昌: 南昌大学, 2006.]

    9. [9]

      (9) Mei, L. H.; Yao, S. J.; Guan, Y. X.; Lin, D. Q. Chinese Journal of Pharmaceuticals 1999, 30 (5), 235. [梅乐和, 姚善泾, 关怡新, 林东强. 中国医药工业杂志, 1999, 30 (5), 235.]

    10. [10]

      (10) Chen, Y.;Wang,W. Q.; Du,W. M. Acta Phys. -Chim. Sin. 2004,20, 540. [陈渝, 王文清, 杜为民. 物理化学学报, 2004, 20,540.] doi: 10.3866/PKU.WHXB20040519

    11. [11]

      (11) Frauli, M.; Ludwig, H. Arch. Gynecol. Obstet. 1987, 241, 87.doi: 10.1007/BF00931229

    12. [12]

      (12) Picciano, P. T.; Johnson, B.;Walenga, R.W.; Donovan, M.;Douglas, B. J.; Kreutzer, D. L. Exp. Cell Res. 1984, 51, 134.

    13. [13]

      (13) Li, A. P.; Zhao, Q.; Cheng, X. C.; Xu, H. Q. Journal of Anhui Agricultural Sciences 2010, 38 (14), 7208. [李爱平, 赵青,程晓春, 徐海青. 安徽农业科学, 2010, 38 (14), 7208.]

    14. [14]

      (14) Dakin, H. D. Am. Chem. J. 1910, 44, 48.

    15. [15]

      (15) Neuberger, A. Adv. Protein Chem. 1948, 4, 297. doi: 10.1016/S0065-3233(08)60009-1

    16. [16]

      (16) Ebbers, E. J.; Ariaans, G. J. A.; Houbiers, J. P. M.; Bruggink, A.;Zwanenburg, B. Tetrahedron 1997, 53, 9417. doi: 10.1016/S0040-4020(97)00324-4

    17. [17]

      (17) Smith, G. G.; Sivakua, T. J. Org. Chem. 1983, 48, 627.

    18. [18]

      (18) Sullivan, R.; Pyda, M.; Pak, J.;Wunderlich, B.; Thompson, J.R.; Pagni, R.; Pan, H.; Barnes, C.; Schwerdtfeger, P.; Compton,R. J. Phys. Chem. A 2003, 107, 6674. doi: 10.1021/jp0225673

    19. [19]

      (19) Wei, M.; Xu, X. Y.; He, J.; Yuan, Q.; Rao, G. Y.; Evans, D. G.;Pu, M.; Yang, L. J. Phys. Chem. Solids 2006, 67, 1469. doi: 10.1016/j.jpcs.2006.01.118

    20. [20]

      (20) Wei, M.; Pu, M.; Guo, J.; Han, J. B.; Li, F.; He, J.; Evans, D. G.;Duan, X. Chem. Mater. 2008, 20, 5169. doi: 10.1021/cm800035k

    21. [21]

      (21) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09,Revision A.01; Gaussian Inc.:Wallingford, CT, 2009.

    22. [22]

      (22) Linder, R.; Nispel, M.; Haber, T.; Kleiermanns, K. Chem. Phys. Lett. 2005, 409, 260. doi: 10.1016/j.cplett.2005.04.109

    23. [23]

      (23) Li, J.; Brill, T. B. J. Phys. Chem. A 2003, 107, 5993. doi: 10.1021/jp022477y

    24. [24]

      (24) mzi, V.; Herak, J. J. Mol. Struct. -Theochem 2003, 629, 71.

    25. [25]

      (25) Ren, X. H. Theoretical Study of Interaction between Solventand Amino Acids. M.S. Dissertation, Jiangnan University,Jiangsu, 2008. [任晓慧. 氨基酸分子与溶剂间相互作用的理论研究[D]. 无锡: 江南大学, 2008.]

    26. [26]

      (26) Yu, Y.; Huang, D. F.;Wang, D. X. Chin. J. Chem. Phys. 2005,18, 336. [俞英, 黄东枫, 王大喜. 化学物理学报, 2005, 18,336.]


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    6. [6]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    7. [7]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    8. [8]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    9. [9]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    10. [10]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    11. [11]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    12. [12]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    13. [13]

      Hui Li Jia Nie Zhongyuan Lü Hujun Qian Youliang Zhu Fuquan Bai Zexing Qu Ronglin Zhong . Developing a Lecture Mode for Theoretical and Computational Chemistry Curriculum under the “Modernization of Chinese Education” Initiative. University Chemistry, 2025, 40(3): 1-9. doi: 10.3866/PKU.DXHX202402007

    14. [14]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    15. [15]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

    16. [16]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    17. [17]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    18. [18]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    19. [19]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    20. [20]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

Metrics
  • PDF Downloads(736)
  • Abstract views(2550)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return