Citation: DAI Yun, LI Jun-Hua, PENG Yue, TANG Xing-Fu. Effects of MnO2 Crystal Structure and Surface Property on the NH3-SCR Reaction at Low Temperature[J]. Acta Physico-Chimica Sinica, ;2012, 28(07): 1771-1776. doi: 10.3866/PKU.WHXB201204175
-
Two manganese oxides with the same nanorod-shaped morphology but different crystal structures, tunnel and layer structures, were synthesized and investigated for selective catalytic reduction of NOx with NH3 (NH3-SCR) at low temperature. Tunneled α-MnO2 had much higher catalytic activity than layered δ-MnO2 under the same reaction conditions. Experiment results revealed that the surface area was not the main factor to affect the NH3-SCR activities over the MnO2 nanorods and that the activities were structure sensitive. Structure analysis and temperature-programmed desorption experiments of NH3 (NH3-TPD) suggested that the exposed (110) plane of α-MnO2 had many Mn cations in coordinatively unsaturated environment, while all of the Mn cations on the exposed (001) plane of δ-MnO2 were in coordinatively saturated environment. Thus, α-MnO2 possessed many more Lewis acid sites. Furthermore, α-MnO2 has weaker Mn―O bonds and an efficient tunnel structure, which are favorable characteristics for NH3 adsorption. Moreover, X-ray photoelectron spectroscopy (XPS) and thermal gravimetric (TG) analysis indicated that α-MnO2 obtained a higher capability for NH3 and NOx activation than δ-MnO2. The crystal structure and surface properties of α-MnO2 are more suitable to the adsorption of NH3 and activation of NH3 and NOx, which accounts for the higher catalytic activity of the α-MnO2 nanorods.
-
-
[1]
(1) Schneider, H.; Tschudin, S.; Schneider, M.;Wokaun, A.; Baiker,A. J. Catal. 1994, 147, 5. doi: 10.1006/jcat.1994.1109
-
[2]
(2) Busca, G.; Lietti, L.; Ramis, G.; Berti, F. Appl. Catal. B: Environ. 1998, 18, 1. doi: 10.1016/S0926-3373(98)00040-X
-
[3]
(3) Marban, G.; Valdes-Solis, T.; Fuertes, A. B. J. Catal. 2004, 226,138. doi: 10.1016/j.jcat.2004.05.022
-
[4]
(4) Qi, G. S.; Yang, R. T. J. Catal. 2003, 217, 434.
-
[5]
(5) Tang, X. F.; Li, J. H.; Sun, L.; Hao, J. M. Appl. Catal. B: Environ. 2010, 99, 156. doi: 10.1016/j.apcatb.2010.06.012
-
[6]
(6) Kijlstra,W. S.; Brands, D. S.; Smit, H. I.; Poels, E. K.; Bliek, A.J. Catal. 1997, 171, 219. doi: 10.1006/jcat.1997.1789
-
[7]
(7) Li, J. H.; Chen, J. J.; Ke, R.; Luo, C. K.; Hao, J. M. Catal. Commun. 2007, 8, 1896. doi: 10.1016/j.catcom.2007.03.007
-
[8]
(8) Lin, T.; Zhang, Q. L.; Li,W.; ng, M. C.; Xing, Y. X.; Chen,Y. Q. Acta Phys. -Chim. Sin. 2008, 24, 1127. [林涛, 张秋林,李伟, 龚茂初, 幸怡汛, 陈耀强. 物理化学学报, 2008, 24,1127.] doi: 10.1016/S1872-1508(08)60046-7
-
[9]
(9) Kapteijn, F.; Sin redjo, L.; Andreini, A.; Moulijn, J. A. Appl. Catal. B: Environ. 1994, 3, 173. doi: 10.1016/0926-3373(93)E0034-9
-
[10]
(10) Tian,W.; Yang, H. S.; Fan, X. Y.; Zhang, X. B. J. Hazard. Mater. 2011, 188, 105. doi: 10.1016/j.jhazmat.2011.01.078
-
[11]
(11) Wang, C.; Sun, L.; Cao, Q. Q.; Hu, B. B.; Huang, Z.W.; Tang,X. F. Appl. Catal. B: Environ. 2011, 101, 598. doi: 10.1016/j.apcatb.2010.10.034
-
[12]
(12) Brock, S. L.; Duan, N. G.; Tian, Z. R.; Giraldo, O.; Zhou, H.;Suib, S. L. Chem. Mater. 1998, 10, 2619. doi: 10.1021/cm980227h
-
[13]
(13) Suib, S. L. Accounts Chem. Res. 2008, 41, 479. doi: 10.1021/ar7001667
-
[14]
(14) Liang, S. H.; Teng, F.; Bulgan, G.; Zong, R. L.; Zhu, Y. F.J. Phys. Chem. C 2008, 112, 5307. doi: 10.1021/jp0774995
-
[15]
(15) Xiao,W.;Wang, D. L.; Lou, X.W. J. Phys. Chem. C 2010, 114,1694. doi: 10.1021/jp909386d
-
[16]
(16) Albering, J. H. Structural Chemistry of Manganese Dioxide andRelated Compounds. In Handbook of Battery Materials; Daniel,C., Besenhard, J. O. Eds.; McGraw-Hill: New York, 1997; pp85-107.
-
[17]
(17) Liu, F. D.; He, H.; Ding, Y.; Zhang, C. B. Appl. Catal. B: Environ. 2009, 93, 194. doi: 10.1016/j.apcatb.2009.09.029
-
[18]
(18) Wang, Z. M.; Kanoh, H. Thermochim. Acta 2001, 379, 7. doi: 10.1016/S0040-6031(01)00596-2
-
[19]
(19) Chen, S. H.; Niu, J. Z.; Liu, J. X.; Li, S. B. Chin. J. Chem. Phys.1999, 12, 176. [陈善宏, 牛建中, 刘新建, 李树本. 化学物理学报, 1999, 12, 176.]
-
[20]
(20) Wang, Z. M.; Tezuka, S.; Kanoh, H. Chem. Mater. 2001, 13,530. doi: 10.1021/cm0007609
-
[21]
(21) Wang, Z. M.; Tezuka, S.; Kanoh, H. Chem. Lett. 2000, 29, 560.
-
[22]
(22) Lee, S. J.; Gavriilidis, A.; Pankhurst, Q. A.; Kyek, A.;Wagner,F. E.;Wong, P. C. L.; Yeung, K. L. J. Catal. 2001, 200, 298. doi: 10.1006/jcat.2001.3209
-
[23]
(23) Larachi, F.; Pierre, J.; Adnot, A.; Bernis, A. Appl. Surf. Sci.2002, 195, 236. doi: 10.1016/S0169-4332(02)00559-7
-
[24]
(24) Wu, Z. B.; Jin, R. B.; Liu, Y.;Wang, H. Q. Catal. Commun.2008, 9, 2217. doi: 10.1016/j.catcom.2008.05.001
-
[25]
(25) Kang, M.; Park, E. D.; Kim, J. M.; Yie, J. E. Appl. Catal. A: Gen. 2007, 327, 261. doi: 10.1016/j.apcata.2007.05.024
-
[26]
(26) Giovanoli, R. Thermochim. Acta 1994, 234, 303. doi: 10.1016/0040-6031(94)85154-9
-
[27]
(27) Lemus, M. A.; Lopez, T.; Recillas, S.; Frias, D. M.; Montes, M.;Delgado, J. J.; Centeno, M. A.; Odriozola, J. A. J. Mol. Catal. A: Chem. 2008, 281, 107. doi: 10.1016/j.molcata.2007.10.037
-
[1]
-
-
[1]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[2]
Yiqian Jiang , Zihan Yang , Xiuru Bi , Nan Yao , Peiqing Zhao , Xu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331
-
[3]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[4]
Lumin Zheng , Ying Bai , Chuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589
-
[5]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[6]
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032
-
[7]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[8]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[9]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[10]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[11]
Liyang ZHANG , Dongdong YANG , Ning LI , Yuanyu YANG , Qi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079
-
[12]
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
-
[13]
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
-
[14]
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
-
[15]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[16]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[17]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[18]
Yuping Wei , Yiting Wang , Jialiang Jiang , Jinxuan Deng , Hong Zhang , Xiaofei Ma , Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007
-
[19]
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
-
[20]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[1]
Metrics
- PDF Downloads(1159)
- Abstract views(1968)
- HTML views(13)