Citation: GUO Xiao-Nan, DU Rui, ZHAO Yan-Ying, PEI Ke-Mei, WANG Hui-Gang, ZHENG Xu-Ming. Dynamic Structures of 2-Thiopyrimidone and 2-Thiopyridone in B-Band Absorptions[J]. Acta Physico-Chimica Sinica, ;2012, 28(07): 1570-1578. doi: 10.3866/PKU.WHXB201204173 shu

Dynamic Structures of 2-Thiopyrimidone and 2-Thiopyridone in B-Band Absorptions

  • Received Date: 7 February 2012
    Available Online: 17 April 2012

    Fund Project: 国家自然科学基金(21033002) (21033002)国家重点基础研究发展规划项目(973) (2007CB815203)资助 (973) (2007CB815203)

  • The dynamic structures of 2-thiopyrimidone (2TPM) and 2-thiopyridone (2TP) in B-band absorptions were studied using the resonance Raman spectroscopy combined with quantum chemical calculations. In gas phase, 2-thiopyrimidine (2MPM, the thiol form) was more stable than 2TPM (the thione form) by ~15.1 kJ·mol-1, whereas in water and acetonitrile 2TPM was more stable than 2MPM by 29.3 and 28.0 kJ·mol-1, respectively. The transition barrier for the ground state proton transfer tautomerization reaction between 2TPM and 2MPM was ~130 kJ·mol-1 in gas phase on the basis of the B3LYP/6-311++ G(d,p) level of theory calculations. The three absorption bands of 2-thiopyrimidone were respectively assigned as πHπL*, πHπL+1*, and πH-1πL* transitions. The vibrational assignments were carried out for the B-band resonance Raman spectra of 2TPM in water and acetonitrile solvents on the basis of the measurements from the Fourier transform (FT)-Raman and Fourier transform-infrared (FT-IR) spectra of 2TPM in solid and/or in solution phases and B3LYP/6-311++G(d,p) computations. The dynamic structures of 2TPM and 2TP were obtained by analysis of the resonance Raman intensity pattern. The differences in the dynamic structures of 2TPM and 2TP reflected differences in the structures of their ππ*/πσ* conical intersection points, and therefore could be used to provide insight into the photoinduced hydrogen-atom detachment-attachment mechanism.

  • 加载中
    1. [1]

      (1) Nimlos, M. R.; Kelley, D. F.; Bernstein, E. R. J. Phys. Chem.1989, 93, 643. doi: 10.1021/j100339a030

    2. [2]

      (2) Held, A.; Pratt, D.W. J. Am. Chem. Soc. 1993, 115, 9708. doi: 10.1021/ja00074a042

    3. [3]

      (3) Matsuda, Y.; Ebata, T.; Mikami, N. J. Chem. Phys. 1999, 110,8397. doi: 10.1063/1.478748

    4. [4]

      (4) Matsuda, Y.; Ebata, T.; Mikami, N. J. Chem. Phys. 2000, 113,573. doi: 10.1063/1.481833

    5. [5]

      (5) Matsuda, Y.; Ebata, T.; Mikami, N. J. Phys. Chem. A 2001, 105,3475. doi: 10.1021/jp003272x

    6. [6]

      (6) Nowak, M. J.; Lapinski, L.; Fulara, J.; Les, A.; Adamowicz, L.J. Phys. Chem. 1992, 96, 1562. doi: 10.1021/j100183a015

    7. [7]

      (7) Beak, P. Accounts Chem. Res. 1977, 10, 186. doi: 10.1021/ar50113a006

    8. [8]

      (8) Hatherley, L. D.; Brown, R. D.; dfrey, P. D.; Pierlot, A. P.;Caminati,W.; Damiani, D.; Melandri, S.; Favero, L. B. J. Phys. Chem. 1993, 97, 46. doi: 10.1021/j100103a011

    9. [9]

      (9) Sanchez, R.; Giuliano, B. M.; Melandri, S.; Favero, L. B.;Caminati,W. J. Am. Chem. Soc. 2007, 129, 6287. doi: 10.1021/ja070712q

    10. [10]

      (10) Fujimoto, A.; Inuzuka, K.; Shiba, R. Bull. Chem. Soc. Jpn.1981, 54, 2802. doi: 10.1246/bcsj.54.2802

    11. [11]

      (11) Sakota, K.; Tokuhara, S.; Sekiya, H. Chem. Phys. Lett. 2007,448, 159. doi: 10.1016/j.cplett.2007.09.085

    12. [12]

      (12) Florio, G. M.; Gruenloh, C. J.; Quimpo, R. C.; Zwier, T. S.J. Chem. Phys. 2000, 113, 11143. doi: 10.1063/1.1324613

    13. [13]

      (13) Moreno, M.; Miller,W. H. Chem. Phys. Lett. 1990, 171, 475.doi: 10.1016/0009-2614(90)85249-C

    14. [14]

      (14) Sobolewski, A. L. Chem. Phys. Lett. 1993, 211, 82. doi: 10.1016/0009-2614(93)80055-T

    15. [15]

      (15) Barone, V.; Adamo, C. Chem. Phys. Lett. 1994, 226, 399. doi: 10.1016/0009-2614(94)00744-6

    16. [16]

      (16) Barone, V.; Adamo, C. J. Phys. Chem. 1995, 99, 15062. doi: 10.1021/j100041a022

    17. [17]

      (17) Sobolewski, A. L.; Adamowicz, L. J. Phys. Chem. 1996, 100,3933. doi: 10.1021/jp950852z

    18. [18]

      (18) Li, Q. S.; Fang,W. H.; Yu, J. G. J. Phys. Chem. A 2005, 109,3983. doi: 10.1021/jp044498t

    19. [19]

      (19) Wang, J.; Boyd, R. J. J. Phys. Chem. 1996, 100, 16141. doi: 10.1021/jp961295z

    20. [20]

      (20) Del Bene, J. E. J. Am. Chem. Soc. 1995, 117, 1607. doi: 10.1021/ja00110a016

    21. [21]

      (21) Chou, P. T.;Wei, C. Y.; Hung, F. T. J. Phys. Chem. B 1997, 101,9119. doi: 10.1021/jp971824e

    22. [22]

      (22) Dkhissi, A.; Adamowicz, L.; Maes, G. J. Phys. Chem. A 2000,104, 2112. doi: 10.1021/jp9938056

    23. [23]

      (23) Esboui, M.; Nsan u, M.; Jaidane, N.; Ben Lakhdar, Z. Chem. Phys. 2005, 311, 277. doi: 10.1016/j.chemphys.2004.11.022

    24. [24]

      (24) Krebs, C.; Forster,W.;Weiss, C.; Hofmann, H. J. J. Prakt. Chem. 1982, 324, 369. doi: 10.1002/prac.19823240304

    25. [25]

      (25) Esboui, M.; Jaidane, N.; Ben Lakhdar, Z. Chem. Phys. Lett.2006, 430, 195. doi: 10.1016/j.cplett.2006.08.119

    26. [26]

      (26) Lowdin, P. O. Rev. Mol. Phys. 1963, 35, 724. doi: 10.1103/RevModPhys.35.724

    27. [27]

      (27) Pullman, B.; Pullman, A. Adv. Heterocycl. Chem. 1971, 13, 77.doi: 10.1016/S0065-2725(08)60349-9

    28. [28]

      (28) Beak, P.; Covington, J. B.; Smith, S. G. J. Am. Chem. Soc. 1976,98, 8284. doi: 10.1021/ja00441a079

    29. [29]

      (29) Beak, P.; Fry, F. S., Jr.; Lee, J.; Steele, F. J. Am. Chem. Soc.1976, 98, 171. doi: 10.1021/ja00417a027

    30. [30]

      (30) Melandri, S.; Evangelisti, L.; Maris, A.; Caminati,W.; Giuliano,B. M.; Feyer, V.; Prince, K. C.; Coreno, M. J. Am. Chem. Soc.2010, 132, 10269. doi: 10.1021/ja104484b

    31. [31]

      (31) Jones, P. A.; Katritzky, A. R. J. Chem. Soc. 1958, 3610.

    32. [32]

      (32) Katritzky, A. R.; Jones, R. A. J. Chem. Soc. 1960, 2937.

    33. [33]

      (33) Cook, M. J.; Katritzky, A. R.; Linda, P.; Tack, R. D. J. Chem. Soc. Perkin Trans. 1972, 2, 1295.

    34. [34]

      (34) Albert, A.; Barlin, G. B. J. Chem. Soc. 1959, 2384.

    35. [35]

      (35) Stoyanov, S.; Petkov, I.; Antonov, L.; Stoyanova, T.;Karagiannidis, P.; Aslanidis, P. Can. J. Chem. 1990, 68, 1482.doi: 10.1139/v90-227

    36. [36]

      (36) Barlin, G. B.; Brown, D. J.; Fenn, M. D. Aust. J. Chem. 1984,37, 2391. doi: 10.1071/CH9842391

    37. [37]

      (37) Spinner, E. J. Chem. Soc. 1960, 1237.

    38. [38]

      (38) Lapinski, L.; Nowak, M. J.; Fulara, J.; Les, A.; Adamowicz, L.J. Phys. Chem. 1992, 96, 6250. doi: 10.1021/j100194a030

    39. [39]

      (39) Contreras, J. G.; Alderete, J. B. J. Mol. Struct. -Theochem 1991,231, 257. doi: 10.1016/0166-1280(91)85224-U

    40. [40]

      (40) Pang, Y. S.;Wang, H. J.; Kim, M. S. J. Mol. Struct. 1998, 441,63. doi: 10.1016/S0022-2860(97)00280-9

    41. [41]

      (41) Colthup, N. B.; Daly, L. H.;Wiberley, S. E. Introduction to Infrared and Raman Spectroscopy, 3rd ed.; Academic Press:New York, 1990.

    42. [42]

      (42) Santhayanarayana, D. N. Vibrational Spectroscopy: Theory and Applications; New Age International Publishers: New Delhi,2004; pp 452-453.

    43. [43]

      (43) Krishnakumar, V.; Xavier, R. J. Spectrochimica Acta Part A2006, 63, 454. doi: 10.1016/j.saa.2005.05.031

    44. [44]

      (44) Abdulla, H. I.; El-Bermani, M. F. Spectrochimica Acta Part A2001, 57, 2659. doi: 10.1016/S1386-1425(01)00455-3

    45. [45]

      (45) Lima, M. C. P.; Coutinho, K.; Canuto, S.; Rocha,W. R. J. Phys. Chem. A 2006, 110, 7253. doi: 10.1021/jp060821b

    46. [46]

      (46) Penfold, B. R. Acta Crystallogr. 1953, 6, 707. doi: 10.1107/S0365110X5300199X

    47. [47]

      (47) Ohms, U.; Guth, H.; Kutoglu, A.; Scheringer, C. Acta Crystallogr. Section B 1982, 38, 831. doi: 10.1107/S0567740882004166

    48. [48]

      (48) Aksnes, D.W.; Kryvi, H. Acta Chim. Scand. 1972, 26, 2255.doi: 10.3891/acta.chem.scand.26-2255

    49. [49]

      (49) Nowak, M. J.; Rotkowska, H.; Lapinski, L.; Leszczynski, J.;Kwiatkowski, J. S. Spectrochimica Acta Part A 1991, 47, 339.doi: 10.1016/0584-8539(91)80112-V

    50. [50]

      (50) Gronneberg, T.; Undheim, K. Org. Mass Spectrom. 1972, 6,823. doi: 10.1002/oms.1210060713

    51. [51]

      (51) Maquestiau, A.; Haverbeke, Y. V.; Meyer, C. D.; Katritzky, A.R.; Cook, M. J.; Page, A. D. Can. J. Chem. 1975, 53, 490. doi: 10.1139/v75-068

    52. [52]

      (52) Cook, M. J.; El-Abbady, S.; Katritzky, A. R.; Guimon, C.;Pfister-Guillouzo, G. J. Chem. Soc. Perkin Trans. 2 1977, 2,1652.

    53. [53]

      (53) Zhu, X. M.; Zhang, S. Q.; Zheng, X. M.; Phillips, D. L. J. Phys. Chem. A 2005, 109, 3086. doi: 10.1021/jp0444114

    54. [54]

      (54) Weng, K. F.; Shi, Y.; Zheng, X. M.; Phillips, D. L. J. Phys. Chem. A 2006, 110, 851. doi: 10.1021/jp055069d

    55. [55]

      (55) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision B.02; Gaussian Inc.: Pittsburgh, PA, 2003.

    56. [56]

      (56) Du, R.; Liu, C.; Zhao, Y. Y.; Pei, K. M.;Wang, H. G.; Zheng, X.M.; Li, M. D.; Xue, J. D.; Phillips, D. L. J. Phys. Chem. B 2011,115, 8266. doi: 10.1021/jp203185a

    57. [57]

      (57) Sobolewski, A. L.; Domcke,W.; Dedonder-Ladeux, C.; Jouvet,C. Phys. Chem. Chem. Phys. 2002, 4, 1093.

    58. [58]

      (58) Nowak, M. J.; Lapinski, L.; Fulara, J.; Les, A.; Adamowicz, L.J. Phys. Chem. 1991, 95, 2404. doi: 10.1021/j100159a053

    59. [59]

      (59) Nowak, M. J.; Lapinski, L.; Rostkowska, H.; Les, A.;Adamowicz, L. J. Phys. Chem. 1990, 94, 7406. doi: 10.1021/j100382a018

    60. [60]

      (60) Rostkowska, H.; Lapinski, L.; Nowak, M. J. J. Phys. Org. Chem. 2010, 23, 56.

    61. [61]

      (61) Chmura, B.; Rode, M. F.; Sobolewski, A. L.; Lapinski, L.;Nowak, M. J. J. Phys. Chem. A 2008, 112, 13655.


  • 加载中
    1. [1]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    4. [4]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    5. [5]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    6. [6]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    7. [7]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    8. [8]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    9. [9]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    10. [10]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    11. [11]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    12. [12]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    13. [13]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    14. [14]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    15. [15]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    16. [16]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    17. [17]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    18. [18]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    19. [19]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    20. [20]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

Metrics
  • PDF Downloads(778)
  • Abstract views(2314)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return