Citation:
	            
		            ZHANG  Jun-Jun, ZHANG  Zhen-Hua, GUO  Chao, LI  Jie, DENG  Xiao-Qing. Electronic Transport Properties for a Zigzag-Edged Triangular Graphene[J]. Acta Physico-Chimica Sinica,
							;2012, 28(07): 1701-1706.
						
							doi:
								10.3866/PKU.WHXB201204172
						
					
				
					
				
	        
- 
	                	
Based on the density functional theory and the non-equilibrium Green?s function method, the electronic transport properties of zigzag-edged triangular graphene were studied systematically. The results revealed that the current-voltage (I-V) characteristics and rectifying effects were closely related to the geometric size and the type of atoms terminated at the edges of triangular graphene. In the case of Hand S- terminated edges, a small triangular graphene had a large current but with a small rectifying ratio. Although the current increased, the rectifying behavior was lowered when H atoms at the edges of the structure were replaced by O atoms. Deeper analysis demonstrated that such a rectification was caused by the asymmetry in the spatial distribution of the frontier orbitals and an asymmetric movement on the molecular-level in triangular graphene under positive and negative biases. It is of great significance that our investigations develop a thorough understanding of the basic physical properties of a triangular graphene.
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
(1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;Zhang, Y.; Dubonos, S. V.; Gri rieva, I. V.; Firsov, A. A.Science 2004, 306, 666. doi: 10.1126/science.1102896
 - 
			
                    [2]
                
			
(2) Zhang, Y. B.; Tan, Y.W.; Stormer, H. L.; Kim, P. Nature 2005,438, 201. doi: 10.1038/nature04235
 - 
			
                    [3]
                
			
(3) He, J.; Chen, K. Q.; Fan, Z. Q.; Tang, L. M.; Hu,W. P. Appl. Phys. Lett. 2010, 97, 193305. doi: 10.1063/1.3515921
 - 
			
                    [4]
                
			
(4) Zeng, J.; Chen, K. Q.; He, J.; Fan, Z. Q.; Zhang, X. J. J. Appl. Phys. 2011, 109, 124502. doi: 10.1063/1.3600067
 - 
			
                    [5]
                
			
(5) Ouyang, F.; Peng, S.; Liu, Z.; Liu, Z. ACS Nano 2011, 5, 4023.doi: 10.1021/nn200580w
 - 
			
                    [6]
                
			
(6) Ouyang, F.; Xiao, J.; Guo, R.; Zhang, H.; Xu, H. Nanotechnology2009, 20, 055202. doi: 10.1088/0957-4484/20/5/055202
 - 
			
                    [7]
                
			
(7) Tombros, N.; Jozsa, C.; Popinciuc, M.; Jonkman, H. T.; vanWees, B. J. Nature 2007, 448, 571. doi: 10.1038/nature06037
 - 
			
                    [8]
                
			
(8) Ci, L.; Xu, Z.;Wang, L.; Gao,W.; Ding, F.; Kelly, K. F.;Yakobson, B. I.; Ajayan, P. M. Nano Res. 2008, 1, 116. doi: 10.1007/s12274-008-8020-9
 - 
			
                    [9]
                
			
(9) Sun, D. L.; Peng, S. L.; Ouyang, J.; Ouyang, F. P. Acta Phys. - Chim. Sin. 2011, 27, 1103. [孙大立, 彭盛霖, 欧阳俊, 欧阳方平. 物理化学学报, 2011, 27, 1103.] doi: 10.3866/PKU.WHXB20110521
 - 
			
                    [10]
                
			
(10) Xu, N.; Kong, F. J.;Wang, Y. Z. Acta Phys. -Chim. Sin. 2011,27, 559. [徐宁, 孔凡杰, 王延宗. 物理化学学报, 2011, 27,559.] doi: 10.3866/PKU.WHXB20110305
 - 
			
                    [11]
                
			
(11) Dai, X. Q.; Li, Y. H.; Zhao, J. H.; Tang, Y. N. Acta Phys. -Chim. Sin. 2011, 27, 369. [戴宪起, 李艳慧, 赵建华, 唐亚楠. 物理化学学报, 2011, 27, 369.] doi: 10.3866/PKU.WHXB20110224
 - 
			
                    [12]
                
			
(12) Liu, B.; Sun, H. J.; Peng, T. J. Acta Phys. -Chim. Sin. 2012, 28,799. [刘波, 孙红娟, 彭同江. 物理化学学报, 2012, 28,799.] doi: 10.3866/PKU.WHXB201202012
 - 
			
                    [13]
                
			
(13) Li, Y. X.;Wei, Z. D.; Zhao, Q. L.; Ding,W.; Zhang, Q.; Chen, S.G. Acta Phys. -Chim. Sin. 2011, 27, 858. [李云霞, 魏子栋, 赵巧玲, 丁炜, 张骞, 陈四国. 物理化学学报, 2011, 27,858.] doi: 10.3866/PKU.WHXB20110411
 - 
			
                    [14]
                
			
(14) Du, X.; Skachko, I.; Barker, A.; Andre, E. Y. Nat. Nanotechnol.2008, 3, 491. doi: 10.1038/nnano.2008.199
 - 
			
                    [15]
                
			
(15) Son, Y.W.; Cohen, M. L.; Louie, S. G. Phys. Rev. Lett. 2006, 97,216803. doi: 10.1103/PhysRevLett.97.216803
 - 
			
                    [16]
                
			
(16) Ezawa, M. Phys. Rev. B 2006, 73, 045432. doi: 10.1103/PhysRevB.73.045432
 - 
			
                    [17]
                
			
(17) Ezawa, M. Phys. Rev. B 2008, 77, 155411. doi: 10.1103/PhysRevB.77.155411
 - 
			
                    [18]
                
			
(18) Ezawa, M. Phys. Rev. B 2007, 76, 245415. doi: 10.1103/PhysRevB.76.245415
 - 
			
                    [19]
                
			
(19) Ezawa, M. Eur. Phys. J. B 2009, 67, 543. doi: 10.1140/epjb/e2009-00041-7
 - 
			
                    [20]
                
			
(20) Ezawa, M. Physica E 2010, 42 , 703.
 - 
			
                    [21]
                
			
(21) Taylor, J.; Guo, H.;Wang, J. Phys. Rev. B 2001, 63, 245407.
 - 
			
                    [22]
                
			
(22) Brandbyge, M.; Mozos, J. L.; Ordejon, P.; Taylor, J.; Stokbro, K.Phys. Rev. B 2002, 65, 165401.
 - 
			
                    [23]
                
			
(23) Landauer, R. Philos. Mag. 1970, 21, 863. doi: 10.1080/14786437008238472
 - 
			
                    [24]
                
			
(24) Zhang, Z. H.; Deng, X. Q.; Tan, X. Q.; Qiu, M.; Pan, J. B. Appl. Phys. Lett. 2010, 97, 183105. doi: 10.1063/1.3506485
 - 
			
                    [25]
                
			
(25) Zhang, Z. H.; Yang, Z.; Yuan, J. H.; Zhang, H.; Deng, X. Q.;Qiu, M. J. Chem. Phys. 2008, 129, 094702. doi: 10.1063/1.2970073
 - 
			
                    [26]
                
			
(26) Zhao, J.; Yu, C.;Wang, N.; Liu, H. J. Phys. Chem. C 2010, 114,4135. doi: 10.1021/jp905713a
 - 
			
                    [27]
                
			
(27) Liu, H.;Wang, N.; Li, P.; Yin, X.; Yu, C.; Gao, N.; Zhao, J.Phys. Chem. Chem. Phys. 2011, 13, 1301.
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
 - 
				[2]
				
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
 - 
				[3]
				
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
 - 
				[4]
				
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
 - 
				[5]
				
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
 - 
				[6]
				
Tongqi Ye , Yanqing Wang , Qi Wang , Huaiping Cong , Xianghua Kong , Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128
 - 
				[7]
				
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
 - 
				[8]
				
Xiaochen Zhang , Fei Yu , Jie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026
 - 
				[9]
				
Xinwan Zhao , Yue Cao , Minjun Lei , Zhiliang Jin , Tsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152
 - 
				[10]
				
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
 - 
				[11]
				
Yupeng TANG , Haiying YANG , Fan JIN , Nan LI . Hydrogen storage properties of C6S6Li6: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1827-1839. doi: 10.11862/CJIC.20240460
 - 
				[12]
				
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
 - 
				[13]
				
Zhengkun QIN , Zicong PAN , Hui TIAN , Wanyi ZHANG , Mingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429
 - 
				[14]
				
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
 - 
				[15]
				
Yaqin Zheng , Lian Zhuo , Meng Li , Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119
 - 
				[16]
				
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
 - 
				[17]
				
Xingyuan Lu , Yutao Yao , Junjing Gu , Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074
 - 
				[18]
				
Xintian Xie , Sicong Ma , Yefei Li , Cheng Shang , Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164
 - 
				[19]
				
Yanglin Jiang , Mingqing Chen , Min Liang , Yige Yao , Yan Zhang , Peng Wang , Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027
 - 
				[20]
				
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(812)
 - Abstract views(2381)
 - HTML views(10)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: