Citation: WANG Yan-Hong, CHEN Yu-Juan, BAO Ling, LANG Xue-Mei, FAN Shuan-Shi. Molecular Dynamics Simulation of CH4 Hydrate Decomposition in the Presence of Poly(2-ethyl-2-oxazoline)[J]. Acta Physico-Chimica Sinica, ;2012, 28(07): 1683-1690. doi: 10.3866/PKU.WHXB201204113 shu

Molecular Dynamics Simulation of CH4 Hydrate Decomposition in the Presence of Poly(2-ethyl-2-oxazoline)

  • Received Date: 7 December 2011
    Available Online: 11 April 2012

    Fund Project: 国家自然科学基金(51106054) (51106054) 广东省高层次人才项目和国家重点基础研究发展计划(973) (2009CB219504-03)资助 (973) (2009CB219504-03)

  • Molecular dynamics simulations were carried out to study the decomposition of CH4 hydrate in the presence of poly(2-ethyl-2-oxazoline) (PEtO) at different concentrations, including 1.25% , 2.50%, and 6.06% (w, mass fraction). The simulation system was composed of a CH4 hydrate crystal and PEtO, which contained a 2×2×2 supercell of CH4 hydrate crystal and PEtO polymer. System configurations showed that hydrogen bonding networks between water molecules making up the main framework of the hydrate cages were distorted in the presence of the PEtO polymer. Final configurations in all of the systems were completely collapsed. Radial distribution functions of the oxygen atoms, mean square displacements, and diffusion coefficients of water molecules were applied to compare the effect of different PEtO concentrations on the CH4 hydrate. Within a certain concentration range, higher concentrations led to a better inhibition effect. It was confirmed that PEtO is a type of prospective low dosage inhibitor with biodegradability. The decomposition mechanism involves the absorption of the PEtO polymer onto the surface of the hydrate crystal, with its active functional group (N ―C=O) forming hydrogen bonds with water molecules in the hydrate and decomposing the hydrate surface. PEtO continued to decompose the surface layer of hydrate, resulting ultimately in the collapse of the hydrate cages.

  • 加载中
    1. [1]

      (1) Sum, A. K.; Koh, C. A.; Sloan, E. D. Industrial & Engineering Chemistry Research 2009, 48, 7457. doi: 10.1021/ie900679m

    2. [2]

      (2) Long, J. P.; Sloan, E. D. Int. J. Thermophys. 1996, 17, 1. doi: 10.1007/BF01448204

    3. [3]

      (3) Hammerschmidt, E. G. Industrial & Engineering Chemistry1934, 26, 851.

    4. [4]

      (4) Rodger, P. M.; Forester, T. R.; Smith,W. Fluid Phase Equilib.1996, 116, 326. doi: 10.1016/0378-3812(95)02903-6

    5. [5]

      (5) Carver, T. J.; Drew, M. G. B.; Rodger, P. M. Phys. Chem. Chem. Phys. 1999, 1, 1807.

    6. [6]

      (6) Storr, M. T.; Taylor, P. C.; Monfort, J. P.; Rodger, P. M. J. Am. Chem. Soc. 2004, 126, 1569. doi: 10.1021/ja035243g

    7. [7]

      (7) Hawtin, R.W.; Rodger, P. M. J. Mater. Chem. 2006, 16, 1934.doi: 10.1039/b600285b

    8. [8]

      (8) Moon, C.; Hawtin, R.W.; Rodger, P. M. Faraday Discuss. 2007,136, 367. doi: 10.1039/b618194p

    9. [9]

      (9) Zhang, J.; Hawtin, R.W.; Yang, Y.; Nakagava, E.; Rivero, M.;Choi, S. K.; Rodger, P. M. J. Phys. Chem. B 2008, 112, 10608.doi: 10.1021/jp076904p

    10. [10]

      (10) Kvamme, B.; Huseby, G.; Forrisdahl, O. K. Mol. Phys. 1997,90, 979.

    11. [11]

      (11) Kvamme, B.; Kuznetsova, T.; Aasoldsen, K. J. Mol. Graph. Model. 2005, 23, 13.

    12. [12]

      (12) Kuznetsova, T.; Sapronova, A.; Kvamme, B.; Johannsen, K.;Haug, J. Macromol. Symp. 2010, 287, 168. doi: 10.1002/masy.201050124

    13. [13]

      (13) Wan, L. H.; Yan, K. F.; Li, X. S.; Fan, S. S. Acta Phys. -Chim. Sin. 2009, 25, 486. [万丽华, 颜克凤, 李小森, 樊栓狮. 物理化学学报, 2009, 25, 486.] doi: 10.3866/PKU.WHXB20090315

    14. [14]

      (14) Balbuena, D. A. G.; Balbuena, P. B. J. Phys. Chem. C 2007, 111,15554. doi: 10.1021/jp071959c

    15. [15]

      (15) Anderson, B. J.; Radhakrishnan, R.; Tester, J.W.; Trout, B. L.Abstr. Am. Chem. Soc. 2005, 229, U593.

    16. [16]

      (16) Zhang, M.; Anderson, B. J.;Warzinski, R. P.; Holder, G. D.Molecular Dynamics Simulation of Hydrate Lattice Distortion.Prepr. Pap. Am. Chem. Soc., Div. Fuel Chem., Salt Lake City,2009; p 237.

    17. [17]

      (17) Colle, K. S.; Oelfke, R. H.; Kelland, M. A. Polymer contg.amide unit|used for inhibiting formation of gas hydrate(s) in e.g.oil or gas pipeline; GB Patent 2301824-A, 1996-12-18.

    18. [18]

      (18) Karaaslan, U.; Parlaktuna, M. Energy & Fuels 2002, 16, 1387.doi: 10.1021/ef0200222

    19. [19]

      (19) Geng, C. Y.;Wen, H.; Zhou, H. J. Phys. Chem. A 2009, 113,5463. doi: 10.1021/jp811474m

    20. [20]

      (20) Kirchner, M. T.; Boese, R.; Billups,W. E.; Norman, L. R. J. Am. Chem. Soc. 2004, 126, 9407. doi: 10.1021/ja049247c

    21. [21]

      (21) McMullan, R. K.; Jeffrey, G. A. J. Chem. Phys. 1965, 42, 2725.doi: 10.1063/1.1703228

    22. [22]

      (22) Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem. 1987, 91, 6269. doi: 10.1021/j100308a038

    23. [23]

      (23) Materials Studio, Version 4.4; Accelrys Software Inc: SanDie , 2008.

    24. [24]

      (24) Tse, J. S.; Klein, M. L.; McDonald, I. R. J. Phys. Chem. 1983,87, 4198. doi: 10.1021/j100244a044

    25. [25]

      (25) Moon, C.; Taylor, P. C.; Rodger, P. M. J. Am. Chem. Soc. 2003,125, 4706. doi: 10.1021/ja028537v

    26. [26]

      (26) Kelland, M. A. J. Appl. Polym. Sci. 2011, 121, 2282. doi: 10.1002/app.33942

    27. [27]

      (27) Ajiro, H.; Takemoto, Y.; Akashi, M.; Chua, P. C.; Kelland, M. A.Energy & Fuels 2010, 24, 6400. doi: 10.1021/ef101107r

    28. [28]

      (28) Chen, Y. J.;Wang, Y. H.; Fan, S. S.; Lang, X. M. Acta Chimica Sinica 2010, 68, 2253. [陈玉娟, 王燕鸿, 樊栓狮, 郎雪梅.化学学报, 2010, 68, 2253.]


  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    3. [3]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    4. [4]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    5. [5]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    6. [6]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    7. [7]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    8. [8]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    9. [9]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    10. [10]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    11. [11]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    12. [12]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    13. [13]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    14. [14]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    15. [15]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    16. [16]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    17. [17]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    18. [18]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    19. [19]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    20. [20]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

Metrics
  • PDF Downloads(799)
  • Abstract views(2177)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return