Citation: LIN Xue, GUAN Qing-Feng, LI Hai-Bo, LI Hong-Ji, BA Chun-Hua, DENG Hai-De. Bi3.25Nd0.75Ti3O12 Nanostructures: Controllable Synthesis and Visible-Light Photocatalytic Activities[J]. Acta Physico-Chimica Sinica, ;2012, 28(06): 1481-1488. doi: 10.3866/PKU.WHXB201203313
-
Neodymium-doped bismuth titanate (Bi3.25Nd0.75Ti3O12, BNdT) nanostructures with different morphologies were synthesized hydrothermally without using surfactant or template. Transmission electron microscopy (TEM) results showed that different morphologies could be fabricated simply by manipulating the concentration of OH- ions during hydrothermal synthesis. Hydroxide ions played an important role in controlling the formation of seeds and the growth rate of BNdT particles. On the basis of structural analysis of samples obtained under different conditions, a possible mechanism for the formation of these distinctive morphologies was proposed. A UV-visible diffuse reflectance spectrum (UV-Vis DRS) of an as-prepared BNdT sample revealed that its band gap energy (Eg) was about 1.984 eV. BNdT photocatalysts exhibited higher photocatalytic activities for the degradation of methyl orange (MO) under visible light irradiation than those for traditional commercial P25 TiO2 and N-doped TiO2 (N-TiO2). BNdT nanowires prepared using a hydroxide concentration of 10 mol·L-1 showed the highest photocatalytic activity among the samples. Over this catalyst, 93.0% degradation of MO (0.01 mmol·L-1) was obtained after irradiation with visible light for 360 min. In addition, there was no significant decrease in photocatalytic activity after the catalyst was used 4 times, indicating that BNdT is a stable photocatalyst for degradation of MO under visible light irradiation.
-
-
[1]
(1) Uyguner-Demirel, C. S.; Bekbolet, M. Chemosphere 2011, 84, 1009. doi: 10.1016/j.chemosphere.2011.05.003
-
[2]
(2) Yu, J. G.; Xiang, Q. J.; Zhou, M. H. Appl. Catal. B: Environ. 2009, 90, 595. doi: 10.1016/j.apcatb.2009.04.021
-
[3]
(3) Xu, D.; Gao, A. M.; Deng, W. L. Acta Phys. -Chim. Sin. 2008, 24 (7), 1219. [许迪, 高爱梅, 邓文礼. 物理化学学报, 2008, 24 (7), 1219.] doi: 10.3866/PKU.WHXB20080717
-
[4]
(4) Xie, J.; Wang H.; Duan, M. Acta Phys. -Chim. Sin. 2011, 27 (1), 193. [谢娟, 王虎, 段明. 物理化学学报, 2011, 27 (1): 193.] doi: 10.3866/PKU.WHXB20110124
-
[5]
(5) Yang, X. H.; Liu, C.; Liu, J. K.; Zhu, Z. C. Acta Phys. -Chim. Sin. 2011, 27 (12), 2939. [杨小红, 刘畅, 刘金库, 朱子春. 物理化学学报, 2011, 27 (12), 2939.] doi: 10.3866/PKU.WHXB20112939
-
[6]
(6) Hu, Y. F.; Li, Y. X.; Peng, S. Q.; Lv, G. X.; Li, S. B. Acta Phys. -Chim. Sin., 2008, 24 (11), 2071. [胡元方, 李越湘, 彭绍琴, 吕功煊, 李树本. 物理化学学报, 2008, 24 (11), 2071.] doi: 10.3866/PKU.WHXB20081123
-
[7]
(7) Li, A. C.; Li, G. H.; Zheng, Y.; Feng, L. L.; Zheng, Y. J. Acta Phys. -Chim. Sin. 2012, 28 (2), 457. [李爱昌, 李桂花, 郑琰, 冯玲玲, 郑彦俊. 物理化学学报, 2012, 28 (2), 457.] doi: 10.3866/PKU.WHXB201112081
-
[8]
(8) Zhang, Q.; He, Y. Q.; Chen, X. G.; Hu, D. H.; Li, L. J.; Yin, T.; Ji, L. L.Acta Phys. -Chim. Sin. 2010, 26 (3), 654. [张琼, 贺蕴秋, 陈小刚, 胡栋虎, 李林江, 尹婷, 季伶俐. 物理化学学报, 2010, 26 (3), 654.] doi: 10.3866/PKU.WHXB20100318
-
[9]
(9) Shen, J. J.; Liu, C.; Zhu, Y. D.; Li, W.; Feng, X.; Lu, X. H. Acta Phys. -Chim. Sin. 2009, 25 (5), 1013. [沈晶晶, 刘畅, 朱育丹, 李伟, 冯新, 陆小华. 物理化学学报, 2009, 25 (5), 1013.] doi: 10.3866/PKU.WHXB20090421
-
[10]
(10) Ghorai, T. K.; Biswas, S. K.; Pramanik, P. Appl. Surf. Sci. 2008, 254, 7498. doi: 10.1016/j.apsusc.2008.06.042
-
[11]
(11) Wang, H. Q.; Wu, Z. B.; Liu, Y.; Wang, Y. J. Chemosphere 2008, 74, 773.
-
[12]
(12) Zhang, J. W.; Jin, Z. S.; Feng, C. X.; Yu, L. G.; Zhang, J. W.; Zhang, Z. J. J. Solid State Chem. 2011, 184, 3066. doi: 10.1016/j.jssc.2011.09.016
-
[13]
(13) Liu, D. R.; Jiang, Y. S.; Gao, G. M. Chemosphere 2011, 83, 1546. doi: 10.1016/j.chemosphere.2011.01.033
-
[14]
(14) Yu, J. Q.; Zhang, Y.; Kudo, A. J. Solid State Chem. 2009, 182, 223. doi: 10.1016/j.jssc.2008.10.021
-
[15]
(15) Zhang, L.; Cao, X. F.; Chen, X. T.; Xue, Z. L. J. Colloid Interface Sci. 2011, 354, 630. doi: 10.1016/j.jcis.2010.11.042
-
[16]
(16) Zhang, L. S.; Wang, H. L.; Chen, Z. G.; Wong, P. K.; Liu, J. S. Appl. Catal. B: Environ. 2011, 106, 1.
-
[17]
(17) Hou, J. G.; Wang, Z.; Jiao, S. Q.; Zhu, H. M. J. Hazard. Mater. 2011, 192, 1772. doi: 10.1016/j.jhazmat.2011.07.013
-
[18]
(18) Hou, J. G.; Cao, R.; Jiao, S. Q.; Zhu, H. M.; Kumar, R. V. Appl. Catal. B: Environ. 2011, 104, 399. doi: 10.1016/j.apcatb.2011.02.032
-
[19]
(19) Thanabodeekij, N.; Gulari, E.; Wongkasemjit, S. Powder Technol. 2005, 160, 203. doi: 10.1016/j.powtec.2005.08.015
-
[20]
(20) Hou, J. G.; Jiao, S. Q.; Zhu, H. M.; Kumar, R. V. J. Solid State Chem. 2011, 184, 154. doi: 10.1016/j.jssc.2010.11.017
-
[21]
(21) Zhou, T. F.; Hu, J. C. Environ. Sci. Technol. 2010, 44, 8698. doi: 10.1021/es1019959
-
[22]
(22) Cheng, H. F.; Huang, B. B.; Dai, Y.; Qin, X. Y.; Zhang, X. Y.; Wang, Z. Y.; Jiang, M. H. J. Solid State Chem. 2009, 182, 2274. doi: 10.1016/j.jssc.2009.06.006
-
[23]
(23) Lin, X.; Guan, Q. F.; Liu, Y.; Li, H. B. Chin. Phys. B 2010, 19, 107701. doi: 10.1088/1674-1056/19/10/107701
-
[24]
(24) Lin, X.; Guan, Q. F.; Li, H. B.; Liu, Y.; Zou, G. T. Sci. China-Phys. Mech. Astron. 2012, 55, 33. doi: 10.1007/s11433-011-4574-8
-
[25]
(25) Xu, J. J.; Chen, M. D.; Fu, D. G. Appl. Surf. Sci. 2011, 257, 7381. doi: 10.1016/j.apsusc.2011.02.030
-
[26]
(26) Xu, J.; Wang, W. Z.; Shang, M.; Gao, E. P.; Zhang, Z. J.; Ren, J. J. Hazard. Mater. 2011, 196, 426. doi: 10.1016/j.jhazmat.2011.09.010
-
[27]
(27) Yu, H. G.; Yu, J. G.; Cheng, B. Chemosphere 2007, 66, 2050. doi: 10.1016/j.chemosphere.2006.09.080
-
[28]
(28) Wang, Z. Z.; Qi, Y. J.; Qi, H. Y.; Lu, C. J.; Wang, S. M. J Mater Sci: Mater Electron 2010, 21, 523. doi: 10.1007/s10854-009-9950-z
-
[29]
(29) Yao, W. F.; Xu, X. H.; Wang, H.; Zhou, J. T.; Yang, X. N.; Zhang, Y.; Shang, S. X.; Huang, B. B. Appl. Catal. B: Environ. 2004, 52, 109. doi: 10.1016/j.apcatb.2004.04.002
-
[30]
(30) Xu, G. C.; Pan, L.; Guan, Q. F.; Zou, G. T. Acta Physica Sinica 2006, 55, 3080. [徐国成潘玲, 关庆丰, 邹广田. 物理学报, 2006, 55, 3080.] doi: 10.3321/j.issn:1000-3290.2006.06.073
-
[31]
(31) Hou, Y. D.; Wang, X. C.; Wu, L.; Chen, X. F.; Ding, Z. X.; Wang, X. X.; Fu, X. Z. Chemosphere 2008, 72, 414. doi: 10.1016/j.chemosphere.2008.02.035
-
[32]
(32) Jiang, X. P.; Lin, M.; Tu, N.; Chen, C.; Zhou, S. L.; Zhan, H. Q. J. Alloy. Compd. 2011, 509, 9346. doi: 10.1016/j.jallcom.2011.07.034
-
[33]
(33) Yang, J. H.; Zheng, J. H.; Zhai, H. J.; Yang, L. L.; Lang, J. H.; Gao M. J. Alloy. Compd. 2009, 481, 628. doi: 10.1016/j.jallcom.2009.03.108
-
[34]
(34) Arrouvel, C.; Digne, M.; Breysse, M.; Toulhoat, H.; Raybaud, P. J. Catal. 2004, 222, 152. doi: 10.1016/j.jcat.2003.10.016
-
[35]
(35) Hou, L.; Hou, Y. D.; Song, X. M.; Zhu, M. K.; Wang, H.; Yan, H. Mater. Res. Bull. 2006, 41, 1330. doi: 10.1016/j.materresbull.2005.12.010
-
[36]
(36) Zhu, X. Q.; Zhang, J. L.; Chen, F. Chemosphere 2010, 78, 1350. doi: 10.1016/j.chemosphere.2010.01.002
-
[37]
(37) to, T.; Noguchi, Y.; Soga, M.; Miyayama, M. Mater. Res. Bull. 2005, 40, 1044. doi: 10.1016/j.materresbull.2005.02.025
-
[38]
(38) Cai, M. Q.; Yin, Z.; Zhang, M. S.; Li, Y. Z. Chem. Phys. Lett. 2004, 399, 89. doi: 10.1016/j.cplett.2004.09.143
-
[1]
-
-
[1]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[2]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[3]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[4]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[5]
Jie Li , Huida Qian , Deyang Pan , Wenjing Wang , Daliang Zhu , Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076
-
[6]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[7]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[8]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[9]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[10]
Zhengzheng LIU , Pengyun ZHANG , Chengri WANG , Shengli HUANG , Guoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039
-
[11]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[12]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[13]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[14]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[15]
Lijuan Liu , Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060
-
[16]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[17]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[18]
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
-
[19]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[20]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[1]
Metrics
- PDF Downloads(976)
- Abstract views(2282)
- HTML views(7)