Citation: CONG Yan-Qing, LI Zhe, WANG Qi, ZHANG Yi, XU Qian, FU Fang-Xia. Enhanced Photoeletrocatalytic Activity of TiO2 Nanotube Arrays Modified with Simple Transition Metal Oxides (Fe2O3, CuO, NiO)[J]. Acta Physico-Chimica Sinica, ;2012, 28(06): 1489-1496. doi: 10.3866/PKU.WHXB201203221
-
Composite electrodes consisting of highly ordered, vertically oriented TiO2 nanotube (TiO2-NT) arrays modified with Fe2O3, CuO, and NiO nanoparticles were successfully fabricated by a simple electrochemical anodization and electrodeposition method. Field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV-Vis diffuse reflectance spectroscopy were used to characterize the structure and optical properties of the resulting Fe2O3/TiO2-NT, CuO/TiO2-NT, and NiO/TiO2-NT composite electrodes. The photoelectrochemical (PEC) activities of the composite electrodes were evaluated using phenol as a model pollutant. Results indicated that transition metal oxide nanoparticles were deposited on the mouth, tube wall, and base of the TiO2-NTs. The PEC activity of the composite electrodes was over twice that of an unmodified TiO2-NT electrode. The Fe2O3/TiO2-NT electrode showed the highest absorption intensity in the visible light region. After treatment for 120 min, the phenol removal efficiency using the Fe2O3/TiO2-NT anode could reach 96%, while it was only 41% for the unmodified TiO2-NT anode. Moreover, the Fe2O3/TiO2-NT electrode tended to generate intermediates of low toxicity. The higher PEC activity of the composite electrodes was attributed to the presence of hetero-nanostructures with high interfacial area comprised of TiO2-NTs and transition metal oxide nanoparticles, which efficiently facilitated electron transfer and inhibited the recombination of photogenerated electron- hole pairs.
-
Keywords:
-
TiO2 nanotube
, - Fe2O3,
- CuO,
- NiO,
- Photoelectrocatalysis,
- Visible light
-
-
-
[1]
(1) Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mayes, A. M. Nature 2008, 452, 301. doi: 10.1038/nature06599
-
[2]
(2) Batzill, M. Energy Environ. Sci. 2011, 4, 3275. doi: 10.1039/c1ee01577j
-
[3]
(3) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
-
[4]
(4) Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B. Science 2002, 297, 2243. doi: 10.1126/science.1075035
-
[5]
(5) Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Nature 2008, 453, 638. doi: 10.1038/nature06964
-
[6]
(6) Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Science 2011, 331, 746. doi: 10.1126/science.1200448
-
[7]
(7) Park, J. H.; Kim, S.; Bard, A. J. Nano Lett. 2006, 6, 24. doi: 10.1021/nl051807y
-
[8]
(8) Ozcan, O.; Yukruk, F.; Akkaya, E. U.; Uner, D. Appl. Catal. B: Environ. 2007, 71, 291. doi: 10.1016/j.apcatb.2006.09.015
-
[9]
(9) Zhao, W.; Sun, Y. L.; Castellano, F. N. J. Am. Chem. Soc. 2008, 130, 12566. doi: 10.1021/ja803522v
-
[10]
(10) Shang, J.; Chai, M.; Zhu, Y. F. Environ. Sci. Technol. 2003, 37, 4494. doi: 10.1021/es0209464
-
[11]
(11) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269. doi: 10.1126/science.1061051
-
[12]
(12) Chen, X.; Burda, C. J. Phys. Chem. B 2004, 108, 15446. doi: 10.1021/jp0469160
-
[13]
(13) Parida, K. M.; Sahu, N.; Tripathi, A. K.; Kamble, V. S. Environ. Sci. Technol. 2010, 44, 4155. doi: 10.1021/es903774j
-
[14]
(14) Sangpour, P.; Hashemi, F.; Moshfegh, A. Z. J. Phys. Chem. C 2010, 114, 13955. doi: 10.1021/jp910454r
-
[15]
(15) Zielinska-Jurek, A.; Kowalska, E.; Sobczak, J. W.; Lisowski, W.; Ohtani, B.; Zaleska, A. Appl. Catal. B: Environ. 2011, 101, 504. doi: 10.1016/j.apcatb.2010.10.022
-
[16]
(16) Mogyorosi, K.; Kmetyko, A.; Czirbus, N.; Vereb, G.; Sipos, P.; Dombi, A. React. Kinet. Catal. Lett. 2009, 98, 215. doi: 10.1007/s11144-009-0052-y
-
[17]
(17) Martin, C.; Martin, I.; Rives, V.; Palmisano, L.; Schiavello, M. J. Catal. 1992, 134, 434. doi: 10.1016/0021-9517(92)90333-D
-
[18]
(18) Hou, Y.; Li, X. Y.; Zou, X. J.; Quan, X.; Chen, G. H. Environ. Sci. Technol. 2009, 43, 858. doi: 10.1021/es802420u
-
[19]
(19) Dlamini, L. N.; Krause, R. W.; Kulkarni, G. U.; Durbach, S. H. Mater. Chem. Phys. 2011, 129, 406. doi: 10.1016/j.matchemphys.2011.04.033
-
[20]
(20) Wang, N.; Li, X. Y.; Wang, Y. X.; Hou, Y.; Zou, X. J.; Chen, G. H. Mater. Lett. 2008, 62, 3691. doi: 10.1016/j.matlet.2008.04.052
-
[21]
(21) Yasomanee, J. P.; Bandara, J. Sol. Energy Mater. Sol. Cells 2008, 92, 348. doi: 10.1016/j.solmat.2007.09.016
-
[22]
(22) Chen, C. J.; Liao, C. H.; Hsu, K. C.; Wu, Y. T.; Wu, J. C. S. Catal. Commun. 2011, 12, 1307. doi: 10.1016/j.catcom.2011.05.009
-
[23]
(23) Zhang, Y. G.; Ma, J. L.; Yu, Y. Environ. Sci. Technol. 2007, 41, 6264. doi: 10.1021/es070345i
-
[24]
(24) Tahar, N. B.; Savall, A. J. J. Electrochem. Soc. 1998, 145, 3427. doi: 10.1149/1.1838822
-
[25]
(25) Bard, A. J.; Faulker, L. R. Electrochemical Methods: Fundamentals and Applications, 2 nd Ed.; JohnWiley & Sons: New York, 2001; p 386.
-
[26]
(26) Xu, Y.; Schoonen, M. A. A. Am. Miner. 2000, 85, 543.
-
[1]
-
-
[1]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[2]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[3]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[4]
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
-
[5]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[6]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[7]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[8]
Jie Li , Huida Qian , Deyang Pan , Wenjing Wang , Daliang Zhu , Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076
-
[9]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[10]
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
-
[11]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[12]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[13]
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
-
[14]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
-
[15]
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
-
[16]
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
-
[17]
Huyi Yu , Renshu Huang , Qian Liu , Xingfa Chen , Tianqi Yu , Haiquan Wang , Xincheng Liang , Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253
-
[18]
Gengchen Guo , Tianyu Zhao , Ruichang Sun , Mingzhe Song , Hongyu Liu , Sen Wang , Jingwen Li , Jingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198
-
[19]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[20]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[1]
Metrics
- PDF Downloads(1253)
- Abstract views(3317)
- HTML views(88)