Citation: ZHANG Lan, ZHANG Zhen-Zhong, WEI Ji-Ying, MENG Bi-Fang, JIANG Feng, LIANG Tong-Xiang. Synthesis of Combined Micro-Mesoporous Zeolites and Their Application to Automobile Cold Start Emission Control[J]. Acta Physico-Chimica Sinica, ;2012, 28(06): 1439-1447. doi: 10.3866/PKU.WHXB201203142 shu

Synthesis of Combined Micro-Mesoporous Zeolites and Their Application to Automobile Cold Start Emission Control

  • Received Date: 31 December 2011
    Available Online: 14 March 2012

    Fund Project: 国家自然科学基金(21077064)资助项目 (21077064)

  • Synthesis of micro-mesoporous zeolites β/M (where β and M denote β zeolite and MCM-41 zeolite, respectively) combined with zeolites β and MCM-41 was achieved in the sodium hydroxide system using a two-step hydrothermal treatment method. Sodium aluminate and fume silica were used as the sources of aluminum and silicon, while tetraethylammonium hydroxide (TEAOH) and cetyltrimethylammonium bromide (CTAB) were used as templates for the formation of β crystal seeds and for self-assembling of β crystal seeds into mesoporous zeolites β/M, respectively. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and high resolution transmission electron microscope (HRTEM). Reaction time and particle size of β crystal seeds were found to play an important role in the synthesis of β/M zeolites. When β seeds crystallize in a short time, a pure phase (denoted βM) can result, whose mesoporous structure resembles MCM-41, while long crystallization times can result in a phase mixture of mesoporous βM and microporous β zeolite. Due to the insertion of the secondary building units of β zeolite into the mesoporous wall, the β/M micro-mesoporous combined zeolites showed enhanced toluene adsorption performance and hydrothermal stability.
  • 加载中
    1. [1]

      (1) Park, J. H.; Park, S. J.; Nam, I. S.; Yeo, G. K.; Kil, J. K.; Youn, Y. K. Microporous Mesoporous Mat. 2007, 101, 263.

    2. [2]

      (2) Park, J. H.; Park, S. J.; Ahn, H. A.; Nam, I. S.; Yeo, G. K; Kil, J. K.; Youn, Y. K. Microporous Mesoporous Mat. 2009, 117, 178.  

    3. [3]

      (3) López, J. M.; Navarro, M. V.; García, T.; Murillo, R.; Mastral, A. M.; Varela-Gandía, F. J.; Lozano-Castelló D.; Bueno-López, A.; Cazorla-Amorós, D. Microporous Mesoporous Mat. 2010, 130, 239.  

    4. [4]

      (4) Czaplewski, K. F.; Reitz, T. L.; Kim, Y. H.; Snurret, R. Q. Microporous Mesoporous Mat. 2002, 56, 55.  

    5. [5]

      (5) Burke, N. R.; Trimma, D. L.; Howe, R. F. Applied Catalysis B 2003, 46, 97.  

    6. [6]

      (6) Liu, Y.; Pinnavaia, T. J. Studies in Surface Science and Catalysis 2002, 142, 1075.  

    7. [7]

      (7) Triantafyllidis, K. S., Lappas, A. A.; Vasalos, I. A.; Liu, Y.; Pinnavaia, T. J. Studies in Surface Science and Catalysis 2004, 154, 2853.

    8. [8]

      (8) Triantafyllidis, K. S.; Iliopoulou, E. F.; Antonakou, E. V.; Lappas, A. A.; Wang, H.; Pinnavaia, T. J. Microporous Mesoporous Mat. 2007, 99, 132.  

    9. [9]

      (9) Triantafyllidis, K. S.; Lappas, A. A.; Vasalos, I. A.; Liu, Y.; Pinnavaia, T. J. Catalysis Today 2006, 112, 33.  

    10. [10]

      (10) Liu, Y.; Zhang, W.; Pinnavaia, T. J. Angew. Chem. Int. Edit. 2001, 40, 1255.  

    11. [11]

      (11) Di, Y.; Yu, Y.; Sun, Y. Y.; Yang, X. Y.; Lin, S.; Zhang, M. Y.; Li, S. G.; Xiao, F. S. Microporous Mesoporous Mat. 2003, 62, 221.  

    12. [12]

      (12) Zhang, Z. T.; Han, Y.; Xiao, F. S.; Qiu, S. L.; Zhu, L.; Wang, R.W.; Yu, Y.; Zhang, Z.; Zou, B. S.; Wang, Y.Q.; Sun, H. P.; Zhao, D. Y.; Wei, Y. J. Am. Chem. Soc. 2001, 123, 5014.  

    13. [13]

      (13) Xiao, F. S.; Han, Y.; Yu, Y.; Zhang, Z. T.; Qiu, S. L. Preparation Methods of Mesoporous Materials with Strong Acidity and Extraordinary Hydrothermal Stability. CN Patent 1349929A, 2002-05-22. [肖丰收, 韩宇, 于沂, 张宗涛, 裘式纶. 强酸性和高水热稳定性的介孔分子筛材料及其制备方法: 中国, CN1349929A[P]. 2002-05-22.]

    14. [14]

      (14) Van Oers, C. J.; Stevens, W. J. J.; Bruijn, E.; Mertens, M.; Lebedev, O. A.; Van Tendeloo, G.; Meynen, V.; Cool, P. Microporous Mesoporous Mat. 2009, 120, 29.  

    15. [15]

      (15) Zheng, J. L.; Zhai, S. R.; Wu, D.; Sun, Y. H. Journal of Solid State Chemistry 2005, 178, 1630.  

    16. [16]

      (16) Zheng, J. L.; Zhang, Y.; Wei, W.; Wu, D.; Sun, Y. H.; Deng, F.; Luo, Q.; Yue, Y. Acta Phys. -Chim. Sin. 2003, 19, 907. [郑均林, 张晔, 魏伟, 吴东, 孙予罕, 邓风, 罗晴, 岳勇. 物理化学学报, 2003, 19, 907.]

    17. [17]

      (17) Ji, D. K.; Li, S. Y.; Ding, F. C.; Chi, Y. L.; Yi, Y. F.; Zhao, R. S. Journal of China University of Petroleum (Natural Science Edition) 2010, 34, 140. [冀德坤, 李术元, 丁福臣, 迟姚玲, 易玉峰, 赵如松. 中国石油大学学报(自然科学版), 2010, 34, 140.]

    18. [18]

      (18) Bordoloi, A.; Devassy, B. M.; Niphadkar, P. S.; Joshi, P. N.; Halligudi, S. B. Journal of Molecular Catalysis A: Chemical 2006, 253, 239.  

    19. [19]

      (19) Ma, Y. H.; Zhao, H. L.; Tang, S. J.; Hu, J.; Liu, H. L. Acta Phys. -Chim.Sin. 2011, 27, 689. [马燕辉, 赵会玲, 唐圣杰, 胡军, 刘洪来. 物理化学学报, 2011, 27, 689.]

    20. [20]

      (20) Li, G.; Gan, Q. B.; Zhang, H. J.; Wu, T. H. Petrochemical Technology 2002, 31, 106. [李工, 阚秋斌, 章慧杰, 吴通好. 石油化工, 2002, 31, 106.]

    21. [21]

      (21) Shih, P. C.; Wang, J. H.; Mou, C. Y. Catalysis Today 2004, 93-95, 365.  

    22. [22]

      (22) Prokesová, P.; Mintova, S.; Cejka, J.; Bein, T. Microporous Mesoporous Mat. 2003, 64, 165.  

    23. [23]

      (23) Perez-Pariente, J.; Martens, J. A.; Jacobs, P. A. Applied Catalysis 1987, 31, 35.  

    24. [24]

      (24) Lin, S. Acidity and improving catalytic properties in benzene alkylation over preformed aluminosilicate. Ph.D. Dissertation, Jilin University, Jinlin, 2004. [林森. 沸石分子筛前驱体的酸性表征及催化性质研究[D]. 吉林: 吉林大学, 2004.]

    25. [25]

      (25) Mintova, S.; Valtchev, V.; Onfroy, T.; Marichal, C.; Knözinger, H.; Bein, T. Microporous Mesoporous Mat. 2006, 90, 237.  

  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    5. [5]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    6. [6]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    7. [7]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    8. [8]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    9. [9]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    10. [10]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    11. [11]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    12. [12]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    13. [13]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    14. [14]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    15. [15]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    16. [16]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    17. [17]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    18. [18]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    19. [19]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    20. [20]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

Metrics
  • PDF Downloads(811)
  • Abstract views(2188)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return