Citation: CHEN Yong-Dong, WANG Lei, TANG Shui-Hua, CAO Hong-Yan, NG Mao-Chu, CHEN Yao-Qiang. Effect of Ce0.45Zr0.45Y0.07La0.03O1.95/La-Ba-Al2O3 Mass Ratio on the Activity of Fe-Based Monolithic Catalysts for the Combustion of Thin Methane[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1237-1242. doi: 10.3866/PKU.WHXB201203141 shu

Effect of Ce0.45Zr0.45Y0.07La0.03O1.95/La-Ba-Al2O3 Mass Ratio on the Activity of Fe-Based Monolithic Catalysts for the Combustion of Thin Methane

  • Received Date: 25 November 2011
    Available Online: 14 March 2012

    Fund Project: 国家自然科学基金(21173153) (21173153)绿色催化四川省高校重点实验室开放课题基金(LYY1101)资助项目 (LYY1101)

  • Ce0.45Zr0.45Y0.07La0.03O1.95, an oxygen storage material (OSM), and La-Ba-Al2O3 have been prepared by co-precipitation and peptization, respectively, to be used as supports for Fe2O3 catalysts. The Fe2O3 catalysts were obtained by impregnation methods and then coated on the monolith. The catalytic combustion of low concentration (thin) methane was investigated over the prepared catalysts. The effect of the OSM/La-Ba-Al2O3 mass ratio on the physicochemical properties of the catalysts was investigated using nitrogen adsorption-desorption, oxygen storage capacity (OSC) measurements, X-ray diffraction (XRD), and H2-temperature-programmed reduction (H2-TPR). The highest catalytic activity of both fresh and aged Fe2O3 catalysts for thin methane combustion was observed when the mass ratio of OSM/La-Ba-Al2O3 was 1:1. At this OSM/La-Ba-Al2O3 mass ratio, methane started to convert at 446 °C and completely converted at 553 ° C, with 1% (volume fraction) CH4 and a gas hourly space velocity (GHSV) of 50000 h-1. The Fe-based monolithic catalysts with different mass ratios of OSM to La-Ba-Al2O3 had different specific surface areas and reducibilities. XRD results showed that OSM existed in uniform solid solution and Fe2O3 was well dispersed on the binary supports. Based on the characterizations, the high catalytic activity and thermal stability of the catalysts can be attributed to the proper coordination of OSM and La-Ba-Al2O3 for thin methane combustion.
  • 加载中
    1. [1]

      (1) Gélin, P.; Primet, M. Appl. Catal. B 2002, 39 (1), 1.

    2. [2]

      (2) Choudhary, T. V.; Banerjee, S.; Choudhary, V. R. Appl. Catal. A 2002, 234 (1-2), 1.  

    3. [3]

      (3) Hasan, M. A.; Zaki, M. I.; Pasupulety, L.; Kumari, K. Appl. Catal. A 1999, 181 (1), 171.  

    4. [4]

      (4) Xu, J.; Li, P.; Song, X. F.; He, C. H.; Yu, J. G.; Han, Y. F. J. Phys. Chem. Lett. 2010, 1, 1648.  

    5. [5]

      (5) Ren, X. G.; Zheng, J. D.; Song, Y. J.; Liu, P. Catal. Commun. 2008, 9 (5), 807.  

    6. [6]

      (6) Petrovi?, S.; Terlecki-Baricevi?, A.; Karanovi?, L.; Kirilov-Stefanov, P.; Zduji?, M.; Dondur, V.; Paneva, D.; Mitov, I.; Raki?, V. Appl. Catal. B 2008, 79 (2), 186.

    7. [7]

      (7) Tian, T. F.; Zhan, M. C.; Wang, W. D., Chen, C. S. Catal. Commun. 2009, 10 (5), 513.  

    8. [8]

      (8) Artizzu-Duart, P.; Millet, J. M.; Guilhaumea, N.; Garbowski, E.; Primet, M. Catal. Today 2000, 59 (1-2), 163.

    9. [9]

      (9) Jiang, Z.; Hou, H. X.; Hao, Z. P.; Kang, S. F.; Li, J. J.; Hu, C. Acta Phys. -Chim. Sin. 2004, 20 (11), 1313. [蒋政, 侯红霞, 郝郑平, 康守方, 李进军, 胡春. 物理化学学报, 2004, 20 (11), 1313.]

    10. [10]

      (10) Yue, B. H.; Zhou, R. X.; Wang, Y. J.; Zheng, X. M. Appl. Surf. Sci. 2006, 252 (16), 5820.

    11. [11]

      (11) Kucharczyk, B.; Tylus, W. Catal. Today 2008, 137 (2-4), 324.

    12. [12]

      (12) Li, L. N.; Chen, Y. Q.; ng, M. C.; Xiang, Y. Chem. J. Chin. Univ. 2003, 24 (12), 2235. [李丽娜, 陈耀强, 龚茂初, 向云. 高等学校化学学报, 2003, 24 (12), 2235.]

    13. [13]

      (13) Choudhary, V. R.; Deshmukh, G. M.; Pataskar, S. G. Environ. Sci. Technol. 2005, 39 (7), 2364.  

    14. [14]

      (14) Zhang, L. J.; Dong, W. P.; Guo, J. X.; Yuan, S. H.; Zhang, L.; ng, M. C.; Chen, Y. Q. Acta Phys. -Chim. Sin. 2007, 23 (11), 1738. [张丽娟, 董文萍, 郭家秀, 袁书华, 张磊, 龚茂初, 王健礼, 陈耀强. 物理化学学报, 2007, 23 (11), 1738.]

    15. [15]

      (15) Reddy, B. M.; Reddy, G. K.; Rao, K. N. J. Mol. Catal. A: Chem. 2009, 306 (1-2), 62.

    16. [16]

      (16) Wilcox, L.; Burnside, G.; Kiranga, B.; Shekhawat, R.; Mazumder, M. K.; Hawk, R. M.; Lindquist, D. A. Chem. Mater. 2003, 15 (1), 51.  

    17. [17]

      (17) Turko, G. A.; Ivanova, A. S.; Plyasova, L. M.; Litvak, G. S.; Ro v, V. A. Kinet. Catal. 2005, 46 (6), 884.

    18. [18]

      (18) Zhang, L.; Zheng, L. M.; Guo, J. X.; Wu, D. D.; ng, M. C.; Wang, J. L.; Chen, Y. Q. Acta Phys. -Chim. Sin. 2008, 24 (8), 1342. [张磊, 郑灵敏, 郭家秀, 吴冬冬, 龚茂初, 王健礼, 陈耀强. 物理化学学报, 2008, 24 (8), 1342.]

    19. [19]

      (19) Lv, J. D.; Wang, L.; Lei, D.; Guo, H. X.; Kumar, R. V. J. Alloy. Compd. 2009, 467, 376.  

    20. [20]

      (20) Liu, Z. M.; Chen, Y. Q.; Zhong, J. B.; Wang, J. L.; Yan, S. H.; ng, M. C. J. Rare Earths 2007, 25 (5), 585.

    21. [21]

      (21) Chen, Y. D.; Liao, C. W.; Cao, H. Y.; Liu, Z. M.; Wang, J. L.; ng, M. C.; Chen, Y. Q. Chin. J. Catal. 2010, 31 (5), 562. [陈永东, 廖传文, 曹红岩, 刘志敏, 王健礼, 龚茂初, 陈耀强. 催化学报, 2010, 31 (5), 562.]

    22. [22]

      (22) Chen, Y. D.; Zhu, Y.; Wang, J. L.; Chen, Y. Q.; ng, M. C. Chin. J. Inorg. Chem. 2009, 25 (10), 1771. [陈永东, 朱艺, 王健礼, 陈耀强, 龚茂初. 无机化学学报, 2009, 25 (10), 1771.]  

    23. [23]

      (23) Scirè, S.; Minicò, S.; Crisafulli, C.; Galvagno, S. Catal. Comm. 2001, 2 (6-7), 229.

    24. [24]

      (24) Jen, H. W.; Graham, G. W.; Chun, W.; McCabe, R. W.; Cuif, J. P.; Deutsch, S. E.; Touret, O. Catal. Today 1999, 50 (2), 309.

    25. [25]

      (25) Zeng, S. H.; Wang, L.; ng, M. C.; Chen, Y. Q. J. Natural Gas Chem. 2010, 19 (5), 499.

    26. [26]

      (26) Li, K. Z.; Wang, H.; Wei, Y. G.; Yan, D. X. Chem. Eng. J. 2010, 156 (3), 512.

  • 加载中
    1. [1]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    2. [2]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    5. [5]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    6. [6]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    7. [7]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    8. [8]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    9. [9]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    10. [10]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    13. [13]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    16. [16]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    17. [17]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    18. [18]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    19. [19]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    20. [20]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

Metrics
  • PDF Downloads(541)
  • Abstract views(2037)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return