Citation: ZHANG Ming-Bo,  NG Li-Dong. Evolution of the Molecular Face during the Reaction Process of F-+CH3Cl→CH3F+Cl-[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1120-1126. doi: 10.3866/PKU.WHXB201203082 shu

Evolution of the Molecular Face during the Reaction Process of F-+CH3Cl→CH3F+Cl-

  • Received Date: 27 December 2011
    Available Online: 8 March 2012

    Fund Project: 国家自然科学基金(21133005, 21073080, 21011120087, 20703022)资助项目 (21133005, 21073080, 21011120087, 20703022)

  • Bimolecular nucleophilic substitution (SN2) reactions are among the fundamental organic reactions, in which electron transfer from the nucleophilic group to the leaving group plays an essential role. We use a high-level ab initio CCSD(T)/aug-cc-pVDZ method in conjunction with our previouslydeveloped molecular face (MF) theory, to investigate the SN2 reaction F-+CH3Cl→CH3F+Cl-. Dynamic representations of molecular shape evolution and electron transfer features throughout the reaction are vividly presented. It is found that along the intrinsic reaction coordinate (IRC), from the beginning of the reaction to the prereaction complex, the molecular intrinsic characteristic contour (MICC) of the nucleophile (F-) contracts slowly, while the electron density on the MICC increases slowly. The MICC of F then expands quickly, and the electron density decreases sharply, especially from the transition state to the product complex. However, for the leaving group (Cl), the MICC contracts, and the electron density increases all along the reaction. Investigations of the potential acting on an electron in a molecule (PAEM) show that, as the reaction progresses, the PAEM gradually decreases between fluorine and carbon, while it gradually increases between carbon and chlorine. This study enhances our understanding of the dynamic processes of bond-forming between F and C atoms and bond-breaking between C and Cl atoms.
  • 加载中
    1. [1]

      (1) Brauman, J. I.; Olmstead, W. N.; Lieder, C. J. Am. Chem. Soc. 1974, 96, 4030.

    2. [2]

      (2) Glukhovtsev, M. N.; Bach, R. D.; Pross, A.; Radom, L. Chem. Phys. Lett. 1996, 260, 558.

    3. [3]

      (3) Flanagin, L. W.; Balbuena, P. B.; Johnston, K. P.; Rossky, P. T. J. Phys. Chem. 1995, 99, 5196.

    4. [4]

      (4) Wladkowski, B. D.; Brauman, J. I. J. Phys. Chem. 1993, 97, 13158.  

    5. [5]

      (5) Duke, A. J.; Bader, R. F. W. Chem. Phys. Lett. 1971, 10, 631.  

    6. [6]

      (6) Tachikawa, H.; Igarashi, M. Chem. Phys. Lett. 1999, 303, 81.  

    7. [7]

      (7) Li, C.; Ross, P.; Szulejko, J. E.; McMahon, T. B. J. Am. Chem. Soc. 1996, 118, 9360.  

    8. [8]

      (8) Hase, W. L.; Sun, L.; Song, K. Science 2002, 296, 875.  

    9. [9]

      (9) Hase, W. L. Science 1994, 266, 998.  

    10. [10]

      (10) Katherine, V.; Benjamin, I. J. Phys. Chem. C 2011, 115, 2290.  

    11. [11]

      (11) Glukhovtsev, M. N.; Pross, A.; Radom, L. J. Am. Chem. Soc. 1995, 117, 2024.  

    12. [12]

      (12) Chandrasekhar, J.; Smith, S. F.; Jorgensen W. L. J. Am. Chem. Soc. 1985, 107, 154  

    13. [13]

      (13) Zhang, J.; William, L. H. J. Phys. Chem. A 2010, 114, 9635.  

    14. [14]

      (14) Parthiban, S.; Oliveira, G.; Martin, J. M. L. 2001, 105, 895.  

    15. [15]

      (15) DeTuri, V. F.; Hintz, P. A.; Ervin, K. M. J. Phys. Chem. A 1997, 101, 5969.  

    16. [16]

      (16) Chabinyc, M. L.; Craig, S. L.; Regan, C. K.; Brauman, J. I. Science 1998, 279, 1882.  

    17. [17]

      (17) Wolfe, S. Can. J. Chem. 1984, 62, 1465.  

    18. [18]

      (18) Shi, Z.; Boyd, R. J. J. Am. Chem. Soc. 1990, 112, 6789.  

    19. [19]

      (19) Glukhovtsev, M. N.; Pross, A.; Radom, L. J. Am. Chem. Soc. 1996, 118, 6273.  

    20. [20]

      (20) nzales, J. M.; Cox, R. S., III.; Brown, S. T.; Allen, W. D.; Schaefer, H. F., III. J. Phys. Chem. A 2001, 105, 11327.  

    21. [21]

      (21) Botschwina, P.; Horn, M.; Seeger, S.; Oswald, R. Ber. Bunsen-Ges. Phys. Chem. 1997, 101, 387.

    22. [22]

      (22) Bader, R. F. W.; Duke, A. J.; Messer, R. R. J. Am. Chem. Soc. 1973, 95, 7715.  

    23. [23]

      (23) Knoerr, E. K.; Eberhart, M. E. J. Phys. Chem. A 2001, 105, 880.  

    24. [24]

      (24) Balvins, J. J.; Copper, D. L. J. Phys. Chem. A 2004, 108, 914.  

    25. [25]

      (25) Safi, B.; Choko, K.; Geerlings, P. J. Phys. Chem. A 2001, 105, 591.  

    26. [26]

      (26) Yang, Z. Z.; Davidson, E. R. Int. J. Quantum Chem. 1996, 62, 47.

    27. [27]

      (27) Yang, Z. Z.; Zhao, D. X. Chem. Phys. Lett. 1998, 292, 387.  

    28. [28]

      (28) ng, L. D.; Zhao, D. X.; Yang, Z. Z. J. Mol. Struc. -Theochem 2003, 636, 57.  

    29. [29]

      (29) Yang, Z. Z.; Zhao, D. X.; Wu, Y. J. Chem. Phys. 2004, 121, 3452.

    30. [30]

      (30) Zhang, M. B.; Yang, Z. Z. J. Phys. Chem. A 2005, 109, 4816.  

    31. [31]

      (31) Yang, Z. Z.; ng, L. D.; Zhao, D. X.; Zhang, M. B. J. Comput. Chem. 2005, 26, 35.  

    32. [32]

      (32) Zhao, D. X.; ng, L. D.; Yang, Z. Z. J. Phys. Chem. A 2005, 109, 10121.  

    33. [33]

      (33) ng, L. D.; Zhao, D. X.; Yang, Z. Z. Sci. China Ser. B Chem. 2005, 48, 89.  

    34. [34]

      (34) Shi, H.; Zhao, D. X.; Yang, Z. Z. Acta Phys. -Chim. Sin. 2007, 23, 1145. [石华, 赵东霞, 杨忠志. 物理化学学报, 2007, 23, 1145.]

    35. [35]

      (35) Zhao, D. X.; Yang, Z. Z. J. Theor. Comput. Chem. 2008, 7, 303.  

    36. [36]

      (36) Yang, Z. Z.; Ding, Y. L.; Zhao, D. X. ChemPhysChem 2008, 9, 2379.  

    37. [37]

      (37) ng, L. D.; Yang, Z. Z. J. Comput. Chem. 2010, 31, 2098.

    38. [38]

      (38) Polo, V.; nzalez, N. P.; Silvi, B.; Andres, J. Theor. Chem. Acc. 2008, 120, 341.  

    39. [39]

      (39) Purvis, G. D., III.; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910.  

    40. [40]

      (40) Scuseria, G. E.; Janssen, C. L.; Schaeffer, H. F., III. J. Chem. Phys. 1988, 89, 7382.  

    41. [41]

      (41) Woon, D. E.; Dunning, T. H., Jr. J. Chem. Phys. 1993, 98, 1358.  

    42. [42]

      (42) Angel, L. A.; Ervin, K. M. J. Phys. Chem. A 2001, 105, 4042.  

    43. [43]

      (43) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al . Gaussian 03, Revision A. 01. Gaussian Inc.: Pittsburgh, PA, 2003.

    44. [44]

      (44) Davidson, E. R. MELD Program Description. ESCOM: New York, 1990.

    45. [45]

      (45) Matlab 7.0, Release 14; The Mathworks Inc.: Natick, MA, 2005.

    46. [46]

      (46) Hu, S. W.; Wang, Y.; Wang, X. Y.; Chu, T. W.; Liu, X. Q. 2003, 107, 2954.  

  • 加载中
    1. [1]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    2. [2]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    3. [3]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    4. [4]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    5. [5]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    6. [6]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    10. [10]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    11. [11]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    12. [12]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    13. [13]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    14. [14]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    15. [15]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    16. [16]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    17. [17]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    18. [18]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    19. [19]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    20. [20]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

Metrics
  • PDF Downloads(800)
  • Abstract views(2519)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return