Citation: FAN Xiao-Li, LIU Yan, LIU Chong, LAU Woon-Ming. Reaction Pathways of Acetylene Adsorption on the Ge(001) Surface[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1107-1112. doi: 10.3866/PKU.WHXB201203011 shu

Reaction Pathways of Acetylene Adsorption on the Ge(001) Surface

  • Received Date: 12 December 2011
    Available Online: 1 March 2012

    Fund Project: 国家自然科学基金(20903075) (20903075)高等学校学科创新引智计划(111) (B08040)资助项目 (111) (B08040)

  • The adsorption reaction of acetylene on the Ge(001) surface is investigated by first-principles calculations. In order to understand the relative populations of the di-σ and paired-end-bridge structures, we calculated the adsorption reaction paths leading to their formation at 0.5 and 1.0 ML coverage. More importantly, we studied the adsorption channel involving sublayer Ge atoms by forming a metastable subdi- σ structure. This sub-di-σ structure represents second reaction pathway that results in the end-bridge structure, which plays an important role in the formation of the adsorption configurations. In contrast to C2H2, the adsorption of C2H4 on the Ge(001) surface involving subsurface Ge atoms, is endothermic. Our calculations show from both kinetic and thermodynamic standpoints that the paired-end-bridge structure is the primary adsorption configuration that explains the experimental observations. Our work also helps to understand the fundamental differences between the adsorption of C2H2 and C2H4 on the Ge(001) surface.
  • 加载中
    1. [1]

      (1) Wolkow, R. A. Annu. Rev. Phys. Chem. 1999, 50, 413.  

    2. [2]

      (2) Ma, F.; Xu, M. C.; Yang, B.; Shi, D. X.; Guo, H. M.; Pang, S. J.; Gao, H. J. Chin. Phys. 2007, 16, 2661.  

    3. [3]

      (3) Dou, R. F.; Jia, J. F.; Xu, M. J.; Pan, M. H.; He, K.; Zhang, L. J.; Xue, Q. K. Acta Phys. Sin. 2004, 53, 871. [窦瑞芬, 贾金锋, 徐茂杰, 潘明虎, 何珂, 张丽娟, 薛其坤. 物理学报, 2004, 53, 871.]

    4. [4]

      (4) Wei, S. Y.;Wang, J. G.; Ma, L. Chin. Phys. 2004, 13, 8.

    5. [5]

      (5) Kim, A.; Choi, D. S.; Lee, J. Y.; Kim, S. J. Phys. Chem. B 2004, 108, 3256.  

    6. [6]

      (6) Hwang, Y. J.; Hwang, E.; Kim, D. H.; Kim, A.; Hong, S.; Kim, S. J. Phys. Chem. C 2009, 113, 1426.  

    7. [7]

      (7) Cho, J. H.; Kim, K. S.; Morikawa, E. J. Chem. Phys. 2006, 124, 024716.  

    8. [8]

      (8) Fan, X. L.; Sun, C. C.; Zhang, Y. F.; Lau,W. M. J. Phys. Chem. C 2010, 114, 2200.  

    9. [9]

      (9) Kim, A.; Maeng, J. Y.; Lee, J. Y.; Kim, S. J. Phys. Chem. C 2002, 117, 10215.

    10. [10]

      (10) Fan, X. L.; Min, J. X.; Sun, C. C.; Chi, Q.; Cheng, Q. Z. Acta Chim. Sin. 2010, 68, 1589.

    11. [11]

      (11) Cho, J.; Kleinman, L. J. Chem. Phys. 2003, 119, 2820.  

    12. [12]

      (12) Yoshimoto, Y.; Nakamura, Y.; Kawai, H.; Tsukada, M.; Nakayama, M. Phys. Rev. B 2000, 61, 1965.  

    13. [13]

      (13) Harold, J.W. Z. Phys. Rep. 2003, 388, 1.  

    14. [14]

      (14) Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, R558.  

    15. [15]

      (15) Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251.  

    16. [16]

      (16) Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169.  

    17. [17]

      (17) Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15.  

    18. [18]

      (18) Vanderbilt, D. Phys. Rev. B 1990, 41, 7892.  

    19. [19]

      (19) Cohen, M. L. Phys. Rep. 1984, 110, 293.  

    20. [20]

      (20) Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Rev. Mod. Phys. 1992, 64, 1045.  

    21. [21]

      (21) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671.  

    22. [22]

      (22) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1993, 48, 4978.

    23. [23]

      (23) Jónsson, H. Annu. Rev. Phys. Chem. 2000, 51, 623.  

    24. [24]

      (24) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. J. Chem. Phys. 2000, 113, 9901.  

    25. [25]

      (25) Fan, X. L.; Zhang, Y. F.; Lau,W. M.; Liu, Z. F. Phys. Rev. B 2005, 72, 165305.  

    26. [26]

      (26) Ryan, P. M.; Teague, L. C.; Boland, J. J. J. Am. Chem. Soc. 2009, 131, 6768.  

    27. [27]

      (27) Zhang, Q. J.; Fan, X. L.; Lau,W. M.; Liu, Z. F. Phys. Rev. B 2009, 79, 195303.  

  • 加载中
    1. [1]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    6. [6]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    7. [7]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    8. [8]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    9. [9]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    10. [10]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    11. [11]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    12. [12]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    13. [13]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    14. [14]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    15. [15]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    16. [16]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    17. [17]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    18. [18]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    19. [19]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    20. [20]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

Metrics
  • PDF Downloads(721)
  • Abstract views(3767)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return