Citation: WANG Rong, YANG Cheng-Xu, SHI Ying-Guo, SUN Yu-Zeng, LI Guo-Bao, JIN Tou-Nan, QIN Gao-Wu, LIAO Fu-Hui, LIN Jian-Hua. Phase Relationship, Structure and Cationic Distribution of Oxides in the Mn3O4-Fe2O3 System Synthesized at 1200 ℃[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1021-1029. doi: 10.3866/PKU.WHXB201202271 shu

Phase Relationship, Structure and Cationic Distribution of Oxides in the Mn3O4-Fe2O3 System Synthesized at 1200 ℃

  • Received Date: 8 December 2011
    Available Online: 27 February 2012

    Fund Project: 国家重点基础研究发展规划项目(973)(2010CB833103) (973)(2010CB833103)北京市教委重点基金(KM201010005019)资助 (KM201010005019)

  • A series of oxides in the Mn3O4-Fe2O3 system have been synthesized at 1200 ℃ in air, followed by quenching to room temperature. Three solid solutions, Mn3-3xFe3xO4 (0.00≤x≤0.278), Mn3-3xFe3xO4(0.291≤x≤0.667), and Mn2-2xFe2xO3 (0.89≤x≤1.00), have been identified by powder X-ray diffraction (XRD). Rietveld refinement of the XRD data show that the solids belong to the hausmannite phase with the space group I41/amd, the spinel phase with the space group Fd3m, and the hematite phase with the space group R3c, respectively. Between these are two-phase regions. 57Fe Mössbauer spectra indicate that the valence state of Fe in the three solid solutions is +3; in addition, there are two crystallographically independent Fe3+ ions in the unit cells of the hausmannite and spinel phases, and one Fe3+ in the hematite phase. Analyses of 57Fe Mössbauer spectra and X-ray photoelectron spectra (XPS) revealed that a formula of Mn1-x2+Fex3+[Mnx3+Fex3+Mn2-3x3+]O4 describes the cation distribution of both the hausmannite and spinel phases, but that for the hematite phase is Mn2-2x3+Fe2x3+O3.
  • 加载中
    1. [1]

      (1) Kim, K. Y.; Kim,W. S.; Hong, S. Y. IEEE Trans. Magn. 1993, 29, 2134.  

    2. [2]

      (2) Zhang, Z. Y.; Hu, Z. A.; Yang, Y. Y.;Wang, H.W.; Chang, Y. Q.; Chen, Y. L.; Lei, Z. Q. Acta Phys. -Chim. Sin. 2011, 27, 1673. [张子瑜, 胡中爱, 杨玉英, 王欢文, 常艳琴, 陈艳丽, 雷自强. 物理化学学报, 2011, 27, 1673.]

    3. [3]

      (3) Mason, B. Geol . Fören . Föreh . Stockholm Föerh 1943, 65, 97.  

    4. [4]

      (4) McMurdie, H. F.; Sullivan, B. M.; Maur, F. A. Natl. Bur. Standards Res. 1950, 45, 35.

    5. [5]

      (5) Van Hook, H. J.; Keith, M. L. Am. Miner. 1958, 43, 69.

    6. [6]

      (6) Muan, A.; Somiya, S. Am. J. Sci. 1962, 260, 230.  

    7. [7]

      (7) Wickham, D. G. J. Inorg. Nucl. Chem. 1969, 31, 313.  

    8. [8]

      (8) Von Punge-Witteler, B. Z. Phys. Chem. 1984, 143, 239.

    9. [9]

      (9) Tsuji, T.; Asakura, Y.; Yamashita, T.; Naito, K. J. Solid State Chem. 1991, 50, 273.

    10. [10]

      (10) Crum, J. V.; Riley, B. J.; Vienna, J. D. J. Am. Ceram. Soc. 2009, 92, 2378.  

    11. [11]

      (11) Kjellqvist, L.; Selleby, M. J. Phase Equilib. Diffus. 2010, 31, 113.  

    12. [12]

      (12) Verwey, E. J.W. Nature 1939, 144, 327.

    13. [13]

      (13) Iizumi, M.; Koetzle, T. F.; Shirane, G.; Chikazumi, S.; Matsui, M.; Todo, S. Acta Crystallogr. B 1982, 38, 2121.  

    14. [14]

      (14) Yoshido, J.; Iida, S. J. Phys. Soc. Jpn. 1979, 47, 1627.  

    15. [15]

      (15) Zuo, J. M.; Spence, J. C. H.; Petuskey,W. Phys. Rev. B 1990, 42, 8451.  

    16. [16]

      (16) Novak, P.; Stepankova, H.; Englich, J.; Kohout, J.; Brabers, V. A. M. Phys. Rev. B 2000, 61, 1256.  

    17. [17]

      (17) García, J.; Subías, G.; Proietti, M. G.; Blasco, J.; Renevier, H.; Hodeau, J. L.; Joly, Y. Phys. Rev. B 2001, 63, 054110.  

    18. [18]

      (18) Subías, G.; García, J.; Blasco, J.; Grazia Proietti, M.; Renevier, H.; Sánchez, M. C. Phys. Rev. Lett. 2004, 93, 156408.  

    19. [19]

      (19) Blasco, J.; Garcia, J.; Subias, G. Phys. Rev. B 2011, 83, 104105.  

    20. [20]

      (20) Barth, T. F.W.; Posnjak, E. Z. Kristall. 1932, 82, 325.

    21. [21]

      (21) Verwey, E. J.W.; Heilmann, E. L. J. Chem. Phys. 1947, 15, 174.  

    22. [22]

      (22) Shull, C. G.;Wollan, E. O.; Koehler,W. C. Phys. Rev. 1951, 84, 912.  

    23. [23]

      (23) odenough, J. B.; Lerb, A. L. Phys. Rev. 1955, 98, 391.  

    24. [24]

      (24) Wojtowicz, P. J. Phys. Rev. 1959, 116, 32.  

    25. [25]

      (25) Tackett, R.; Lawes, G. Phys. Rev. B 2007, 76, 024409.  

    26. [26]

      (26) Suzuki, T.; Katsufuji, T. Phys. Rev. B 2008, 77, 220402.  

    27. [27]

      (27) Kim, M.; Chen, X. M.; Joe, Y. I.; Fradkin, E.; Abbamonte, P.; Cooper, S. L. Phys. Rev. Lett. 2010, 104, 136402.  

    28. [28]

      (28) Eschenfelder, A. H. J. Appl. Phys.1958, 29, 378.  

    29. [29]

      (29) Tanaka, M.; Mizoguchi, T.; Aiyama, Y. J. Phys. Soc. Jpn. 1963, 18, 1091.  

    30. [30]

      (30) Kulkarni, J. A.; Darshane, V. S. Thermochim. Acta 1985, 93, 473.  

    31. [31]

      (31) Battault, T.; Legros, R.; Rousset, A. J. European Ceram. Soc. 1995, 15, 1141.  

    32. [32]

      (32) Rietveld, H. M. J. Appl. Crystallogr. 1969, 2, 65.  

    33. [33]

      (33) Larson, A. C.; Von Dreele, R. B. General Structure Analysis System (GSAS); Los Alamos National Laboratory Report LAUR 86-748: Los Alamos, NM, 2004.

    34. [34]

      (34) Mössbauer, R. L. Z. Physik 1958, 151, 124.  

    35. [35]

      (35) Kingery,W. D.; Bowen, H. K.; Uhlmann, D. R. Introduction to Ceramics, 2nd ed.; JohnWiley& Sons: New York, 1976.

    36. [36]

      (36) Raj, A. M. E.; Victoria, S. G.; Jothy, V. B.; Ravidhas, C.; Wollschlager, J.; Suendorf, M.; Neumann, M.; Jayachandran, M.; Sanjeeviraja, C. Appl. Surf. Sci. 2010, 256, 2920.  

    37. [37]

      (37) Boucher, B.; Buhl, R.; Perrin, M. J. Phys. Chem. Solids 1971, 32, 2429.  

    38. [38]

      (38) Jensen, G.; Nielsen, O. J. Phys. C 1974, 7, 409.  

    39. [39]

      (39) Satomi, K. J. Phys. Soc. Jpn. 1960, 16, 258.

    40. [40]

      (40) Jarosch, D. Mineral. Petrol. 1987, 37, 15.  

    41. [41]

      (41) Vegard, L. Z. Phys. 1921, 5, 17.  

    42. [42]

      (42) Vegard, L. Z. Kristallogr. 1928, 67, 239.

    43. [43]

      (43) Pauling, L.; Hendricks, S. B. J. Am. Chem. Soc. 1925, 47, 781.  

    44. [44]

      (44) Baron, V.; Gutzmer, J.; Rundlof, H.; Tellgren, R. Solid State Sci. 2005, 7, 753.  

    45. [45]

      (45) Maia, H. A.; Dearaujo, F. F. T.; Dearaujo, M. A. B.; Danon, J.; Frankel, R. B. Hyperfine Interact. 1993, 77, 43.  

    46. [46]

      (46) Ardizzone, S.; Bianchi, C. L.; Tirelli, D. Colloid Surf. A-Physicochem. Eng. Asp. 1998, 134, 305.  

    47. [47]

      (47) Raj, A. M. E.; Victoria, S. G.; Jothy, V. B.; Ravidhas, C.; Wollschlager, J.; Suendorf, M.; Neumann, M.; Jayachandran, M.; Sanjeeviraja, C. Appl. Surf. Sci. 2010, 256, 2920.  

    48. [48]

      (48) Fyfe,W. S. Nature 1949, 164, 790.

    49. [49]

      (49) Fine, M. E.; Chiou, C. Phys. Rev. 1957, 105, 121.  

    50. [50]

      (50) Baron, V.; Gutzmer, J.; Rundloef, H.; Tellgren, R. Am. Mineral. 1998, 83, 786

    51. [51]

      (51) Chardon, B.; Vigneron, F. J. Magn. Magn. Mater. 1986, 58, 128.  

    52. [52]

      (52) Jensen, G. B.; Nielsen, O. V. J. Phys. C 1974, 7, 409.  

    53. [53]

      (53) Fujii, T.; de Groot, F. M. F.; Sawatzky, G. A.; Voogt, F. C.; Hibma, T.; Okada, K. Phys. Rev. B 1999, 59, 3195.  

  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    3. [3]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    4. [4]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    5. [5]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    6. [6]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    7. [7]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    8. [8]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    9. [9]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    10. [10]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    13. [13]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    14. [14]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    15. [15]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    16. [16]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    17. [17]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    18. [18]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    19. [19]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    20. [20]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

Metrics
  • PDF Downloads(873)
  • Abstract views(3596)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return