Citation: RUB Malik Abdul, NAQVI Andleeb Z.. Effect of Inorganic Salts and Ureas on the Micellization Behavior of Antidepressant Drug Imipramine Hydrochloride at Various Concentrations and Temperatures[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 885-891. doi: 10.3866/PKU.WHXB201202202 shu

Effect of Inorganic Salts and Ureas on the Micellization Behavior of Antidepressant Drug Imipramine Hydrochloride at Various Concentrations and Temperatures

  • Received Date: 30 November 2011
    Available Online: 20 February 2012

    Fund Project: The project was supported by the Council of Scientific and Industrial Research, New Delhi, India (01 (2208)/08/EMR-II). (01 (2208)/08/EMR-II)

  • In the present study we report the micellization behavior of imipramine hydrochloride (IMP) in absence and presence of different concentrations of inorganic salts (LiCl, NaF, NaCl, NaBr, and KCl) and ureas (urea and thiourea) over the temperature range from 288.15 to 303.15 K. The critical micellization concentrations (cmc) of drug and drug+additive systems were determined by conductometric technique. With increasing temperature the cmc first increases then decreases. Maximum cmc values were obtained at 293.15 K with or without additives. In presence of inorganic salts the cmc value decreases which is explained on the basis of nature and ion size of the added ion. Urea and thiourea also decrease the cmc at low concentrations (0.2 mmol·L-1 urea and 0.1 mmol·L-1 thiourea), but, at higher concentrations, increase in cmc is observed. The related thermodynamic parameters are also evaluated and discussed.
  • 加载中
    1. [1]

      (1) Attwood, D.; Florence, A. T. Surfactant Systems: Their Chemistry, Pharmacy and Biology; Chapman and Hall: New York, 1983.

    2. [2]

      (2) Schreier, S.; Malheiros, S. V. P.; de Paula, E. Biochim. Biophys. Acta 2000, 1508, 210.  

    3. [3]

      (3) Attwood, D.; Natarajan, R. J. Pharm. Pharmacol. 1981, 33, 136.

    4. [4]

      (4) Atherton, A. D.; Barry, B.W. J. Colloid Interface Sci. 1985, 106, 479.  

    5. [5]

      (5) Attwood, D. Adv. Colloid Interface Sci. 1995, 55, 271.  

    6. [6]

      (6) Calvaruso, G.; Cavasino, F. P.; Sbriziolo, C.; Liveri, M. L. J. Chem. Soc. Faraday Trans. 1993, 89, 1373.  

    7. [7]

      (7) Ruiz, C. C.; Garcia-Sanchez, F. J. Colloid Interface Sci. 1994, 165, 110.  

    8. [8]

      (8) Ruiz, C. C. Colloid Polym. Sci. 1995, 273, 1033.  

    9. [9]

      (9) Gracie, K.; Turner, D.; Palepu, R. Can. J. Chem. 1996, 74, 1616.  

    10. [10]

      (10) Zang, L.; Somasundaran, P.; Maltesh, C. Langmuir 1996, 12, 2371.  

    11. [11]

      (11) Franks, F. Water, A Comprehensive Treatise, Vol. IV; Plenum Press: New York, 1978.

    12. [12]

      (12) Shellman, J. A.; Schellman, C. The Proteins; Neurath, H. Ed; Vol. II, Academic Press: New York, 1974.

    13. [13]

      (13) Tanford, C. J. Am. Chem. Soc. 1964, 86, 2050.  

    14. [14]

      (14) Tanford, C. The Hydrophobic Effect;Wiley: New York, 1980.  

    15. [15]

      (15) Israelachvili, J. N. Intermolecular and Surface Forces; Academic Press: New York, 1992.

    16. [16]

      (16) Corkill, J. M.; odman, J. F.; Harrod, S. P.; Tate, J. R. Trans. Faraday Soc. 1967, 63, 240.  

    17. [17]

      (17) Das Gupta, P. K.; Moulik, S. P. Colloid Polym. Sci. 1989, 267, 246.  

    18. [18]

      (18) Schick, M. J. J. Phys. Chem. 1964, 68, 3585.  

    19. [19]

      (19) Mazer, N. A.; Carey, M. C.; Kwasnick, R. F.; Benedek, G. B. Biochemistry 1979, 18, 3064.  

    20. [20]

      (20) Taboada, P.; Attwood, D.; Ruso, J. M.; Suarez, M. J.; Sarmiento, F.; Mosquera, V. J. Chem. Eng. Data 1999, 44, 820.  

    21. [21]

      (21) Sarmiento, F.; Lopez-Fontan, J. L.; Prieto, G.; Attwood, D.; Mosquera, V. Colloid Polym. Sci. 1997, 275, 1144.  

    22. [22]

      (22) Taboada, P.; Attwood, D.; Ruso, J. M.; Garcia, M.; Mosquera, V. Phys. Chem. Chem. Phys. 2000, 2, 5175.

    23. [23]

      (23) Williams, R. J.; Phillips, J. N.; Mysels, K. J. Trans. Faraday Soc. 1955, 51, 728.  

    24. [24]

      (24) Taboada, P.; Attwood, D.; Ruso, J. M.; Garcia, M.; Mosquera, V. Langmuir 2001, 17, 173.  

    25. [25]

      (25) Fendler, J. H. Membrane Mimetic Chemistry;Wiley: New York, 1982.

    26. [26]

      (26) Myers, D. Surfactant Science and Technology; VCH Inc.: New York, 1988.

    27. [27]

      (27) Mukerjee, P. Adv. Colloid Interface Sci. 1967, 1, 242.  

    28. [28]

      (28) Rosen, M. J. Surfactants and Interfacial Phenomena, 3rd ed.; Wiley: New York, 2004.  

    29. [29]

      (29) Hofmeister, F. Arch. Exp. Pathol. Pharmacol. 1888, 24, 247.  

    30. [30]

      (30) Nightangle, E.R., Jr. J. Phys. Chem. 1959, 63, 1381.  

    31. [31]

      (31) nzalez-Perez, A.; Del Castillo, J. L.; Czapkiewicz, J.; Rodriguez, J. R. J. Phys. Chem. B 2001, 105, 1720.  

    32. [32]

      (32) Rodriguez, J. R.; nzalez-Perez, A.; Del Castillo, J. L.; Czapkiewicz, J. J. Colloid Interface Sci. 2002, 250, 438.  

    33. [33]

      (33) Alam, M. S.; Naqvi, A. Z.; Kabir-ud-Din. J. Chem. Eng. Data 2007, 52, 1326.  

    34. [34]

      (34) Masunav, A.; Dannenberg, J. J. J. Phys. Chem. B 2000, 104, 806.  

    35. [35]

      (35) Watlaufer, D. B.; Malik, S. K.; Stoller, L.; Coffin, R. L. J. Am. Chem. Soc. 1996, 86, 508.

    36. [36]

      (36) Enea, O.; Jolicoeur, C. J. J. Phys. Chem. 1982, 86, 3870.  

    37. [37]

      (37) Frank, H. S.; Evans, M.W. J. Phys. Chem. 1945, 13, 507.  

    38. [38]

      (38) Roseman, M.; Jencks,W. P. J. Am. Chem. Soc. 1975, 97, 631.  

    39. [39]

      (39) Kresheck, G. C.; Scheraga, H. A. J. Phys. Chem. 1965, 69, 1704.  

    40. [40]

      (40) Bonner, O. D.; Bednareck, J. M.; Arisman, R. K. J. Am. Chem. Soc. 1977, 99, 2898.  

    41. [41]

      (41) Manabe, M.; Koda, M.; Shirahama, K. J. Colloid Interface Sci. 1980, 77, 189.  

    42. [42]

      (42) Bhanumathi, R.; Vijayalakshamma, S. K. J. Phys. Chem. 1886, 90, 4666.

    43. [43]

      (43) Burke, S. E.; Rodgers, M. P.; Palepu, R. Mol. Phys. 2001, 99, 517.  

    44. [44]

      (44) Miller, D. D.; Magid, L. J.; Evans, D. F. J. Phys. Chem. 1990, 94, 5921.  

    45. [45]

      (45) Flockhart, B. D. J. Colloid Sci. 1961, 16, 484.  

    46. [46]

      (46) Stead, J. A.; Taylor, H. J. Colloid Interface Sci. 1969, 30, 482.  

    47. [47]

      (47) Kabir-ud-Din; Siddiqui, U. S.; Kumar, S.; Dar, A. A. Colloid Polym. Sci. 2006, 284, 807.  

    48. [48]

      (48) Ruiz, C. C.; Diaz-Lopez, L.; Aguiar, J. J. Colloid Interface Sci. 2007, 305, 293.  

    49. [49]

      (49) Becher, P. Nonionic Surfactants, Schick, M. J. Ed.; Marcel Dekker: New York, 1967.

    50. [50]

      (50) Lopez-Fontan, J. L.; Costa, J.; Ruso, J. M.; Prieto, G.; Sarmiento, F. J. Chem. Eng. Data 2004, 49, 1008.  

    51. [51]

      (51) Kabir-ud-Din; Rub, M. A.; Naqvi, A. Z. J. Phys. Chem. B 2010, 114, 6354.  

    52. [52]

      (52) Zana, R. J. Colloid Interface Sci. 1980, 78, 330.  

    53. [53]

      (53) Asakawa, T.; Kitano, H.; Ohta, A.; Miyagishi, S. J. Colloid Interface Sci. 2001, 242, 284.  

    54. [54]

      (54) Okano, T.; Tamura, T.; Nanoka, T.; Ueda, S.; Lee, S.; Sugihara, G. Langmuir 2000, 16, 3777.  

    55. [55]

      (55) rski, N.; Kalus, J. Langmuir 2001, 17, 4211.  

    56. [56]

      (56) Taboada, P.; Ruso, J. M.; Garcia, M.; Mosquera, V. Colloids Surf. A 2001, 179, 125.  

    57. [57]

      (57) Taboada, P.; Martinez-Landeira, P.; Ruso, J. M.; Garcia, M.; Mosquera, V. Colloids Surf. A 2002, 197, 95.  

  • 加载中
    1. [1]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    2. [2]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    3. [3]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    4. [4]

      Hong Chen Mao-Yin Ran Long-Hua Li Xin-Tao Wu Hua Lin . [Cs14Cl][Tm71Se110]: An unusual salt-inclusion chalcogenide containing different valent Tm centers and ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100397-100397. doi: 10.1016/j.cjsc.2024.100397

    5. [5]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    6. [6]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    7. [7]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    8. [8]

      Xuebing JiangSiyi WangLi ZhangXian JiangMaling Gou . Lidocaine hydrochloride loaded isomaltulose microneedles for efficient local anesthesia of the skin. Chinese Chemical Letters, 2024, 35(4): 108686-. doi: 10.1016/j.cclet.2023.108686

    9. [9]

      Ya SongMingxia ZhouZhu ChenHuali NieJiao-Jing ShaoGuangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200

    10. [10]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    11. [11]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    12. [12]

      Fengjie LiuFansu MengZhenjiang YangHuan WangYuehong RenYu CaiXingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335

    13. [13]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

    14. [14]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    15. [15]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    16. [16]

      Yan Cheng Hai-Quan Yao Ya-Di Zhang Chao Shi Heng-Yun Ye Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358

    17. [17]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    18. [18]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    19. [19]

      Ningyue XuJun WangLei LiuChangyang Gong . Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. Chinese Chemical Letters, 2024, 35(8): 109225-. doi: 10.1016/j.cclet.2023.109225

    20. [20]

      Yihan ZhouDuo GaoYaying WangLi LiangQingyu ZhangWenwen HanJie WangChunliu ZhuXinxin ZhangYong Gan . Worm-like micelles facilitate the intestinal mucus diffusion and drug accumulation for enhancing colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108967-. doi: 10.1016/j.cclet.2023.108967

Metrics
  • PDF Downloads(629)
  • Abstract views(1564)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return