Citation: RUB Malik Abdul, NAQVI Andleeb Z.. Effect of Inorganic Salts and Ureas on the Micellization Behavior of Antidepressant Drug Imipramine Hydrochloride at Various Concentrations and Temperatures[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 885-891. doi: 10.3866/PKU.WHXB201202202
-
In the present study we report the micellization behavior of imipramine hydrochloride (IMP) in absence and presence of different concentrations of inorganic salts (LiCl, NaF, NaCl, NaBr, and KCl) and ureas (urea and thiourea) over the temperature range from 288.15 to 303.15 K. The critical micellization concentrations (cmc) of drug and drug+additive systems were determined by conductometric technique. With increasing temperature the cmc first increases then decreases. Maximum cmc values were obtained at 293.15 K with or without additives. In presence of inorganic salts the cmc value decreases which is explained on the basis of nature and ion size of the added ion. Urea and thiourea also decrease the cmc at low concentrations (0.2 mmol·L-1 urea and 0.1 mmol·L-1 thiourea), but, at higher concentrations, increase in cmc is observed. The related thermodynamic parameters are also evaluated and discussed.
-
-
[1]
(1) Attwood, D.; Florence, A. T. Surfactant Systems: Their Chemistry, Pharmacy and Biology; Chapman and Hall: New York, 1983.
-
[2]
(2) Schreier, S.; Malheiros, S. V. P.; de Paula, E. Biochim. Biophys. Acta 2000, 1508, 210.
-
[3]
(3) Attwood, D.; Natarajan, R. J. Pharm. Pharmacol. 1981, 33, 136.
-
[4]
(4) Atherton, A. D.; Barry, B.W. J. Colloid Interface Sci. 1985, 106, 479.
-
[5]
(5) Attwood, D. Adv. Colloid Interface Sci. 1995, 55, 271.
-
[6]
(6) Calvaruso, G.; Cavasino, F. P.; Sbriziolo, C.; Liveri, M. L. J. Chem. Soc. Faraday Trans. 1993, 89, 1373.
-
[7]
(7) Ruiz, C. C.; Garcia-Sanchez, F. J. Colloid Interface Sci. 1994, 165, 110.
- [8]
-
[9]
(9) Gracie, K.; Turner, D.; Palepu, R. Can. J. Chem. 1996, 74, 1616.
-
[10]
(10) Zang, L.; Somasundaran, P.; Maltesh, C. Langmuir 1996, 12, 2371.
-
[11]
(11) Franks, F. Water, A Comprehensive Treatise, Vol. IV; Plenum Press: New York, 1978.
-
[12]
(12) Shellman, J. A.; Schellman, C. The Proteins; Neurath, H. Ed; Vol. II, Academic Press: New York, 1974.
- [13]
-
[14]
(14) Tanford, C. The Hydrophobic Effect;Wiley: New York, 1980.
-
[15]
(15) Israelachvili, J. N. Intermolecular and Surface Forces; Academic Press: New York, 1992.
-
[16]
(16) Corkill, J. M.; odman, J. F.; Harrod, S. P.; Tate, J. R. Trans. Faraday Soc. 1967, 63, 240.
-
[17]
(17) Das Gupta, P. K.; Moulik, S. P. Colloid Polym. Sci. 1989, 267, 246.
- [18]
-
[19]
(19) Mazer, N. A.; Carey, M. C.; Kwasnick, R. F.; Benedek, G. B. Biochemistry 1979, 18, 3064.
-
[20]
(20) Taboada, P.; Attwood, D.; Ruso, J. M.; Suarez, M. J.; Sarmiento, F.; Mosquera, V. J. Chem. Eng. Data 1999, 44, 820.
-
[21]
(21) Sarmiento, F.; Lopez-Fontan, J. L.; Prieto, G.; Attwood, D.; Mosquera, V. Colloid Polym. Sci. 1997, 275, 1144.
-
[22]
(22) Taboada, P.; Attwood, D.; Ruso, J. M.; Garcia, M.; Mosquera, V. Phys. Chem. Chem. Phys. 2000, 2, 5175.
-
[23]
(23) Williams, R. J.; Phillips, J. N.; Mysels, K. J. Trans. Faraday Soc. 1955, 51, 728.
-
[24]
(24) Taboada, P.; Attwood, D.; Ruso, J. M.; Garcia, M.; Mosquera, V. Langmuir 2001, 17, 173.
-
[25]
(25) Fendler, J. H. Membrane Mimetic Chemistry;Wiley: New York, 1982.
-
[26]
(26) Myers, D. Surfactant Science and Technology; VCH Inc.: New York, 1988.
-
[27]
(27) Mukerjee, P. Adv. Colloid Interface Sci. 1967, 1, 242.
-
[28]
(28) Rosen, M. J. Surfactants and Interfacial Phenomena, 3rd ed.; Wiley: New York, 2004.
-
[29]
(29) Hofmeister, F. Arch. Exp. Pathol. Pharmacol. 1888, 24, 247.
- [30]
-
[31]
(31) nzalez-Perez, A.; Del Castillo, J. L.; Czapkiewicz, J.; Rodriguez, J. R. J. Phys. Chem. B 2001, 105, 1720.
-
[32]
(32) Rodriguez, J. R.; nzalez-Perez, A.; Del Castillo, J. L.; Czapkiewicz, J. J. Colloid Interface Sci. 2002, 250, 438.
-
[33]
(33) Alam, M. S.; Naqvi, A. Z.; Kabir-ud-Din. J. Chem. Eng. Data 2007, 52, 1326.
-
[34]
(34) Masunav, A.; Dannenberg, J. J. J. Phys. Chem. B 2000, 104, 806.
-
[35]
(35) Watlaufer, D. B.; Malik, S. K.; Stoller, L.; Coffin, R. L. J. Am. Chem. Soc. 1996, 86, 508.
-
[36]
(36) Enea, O.; Jolicoeur, C. J. J. Phys. Chem. 1982, 86, 3870.
-
[37]
(37) Frank, H. S.; Evans, M.W. J. Phys. Chem. 1945, 13, 507.
-
[38]
(38) Roseman, M.; Jencks,W. P. J. Am. Chem. Soc. 1975, 97, 631.
-
[39]
(39) Kresheck, G. C.; Scheraga, H. A. J. Phys. Chem. 1965, 69, 1704.
-
[40]
(40) Bonner, O. D.; Bednareck, J. M.; Arisman, R. K. J. Am. Chem. Soc. 1977, 99, 2898.
-
[41]
(41) Manabe, M.; Koda, M.; Shirahama, K. J. Colloid Interface Sci. 1980, 77, 189.
-
[42]
(42) Bhanumathi, R.; Vijayalakshamma, S. K. J. Phys. Chem. 1886, 90, 4666.
-
[43]
(43) Burke, S. E.; Rodgers, M. P.; Palepu, R. Mol. Phys. 2001, 99, 517.
-
[44]
(44) Miller, D. D.; Magid, L. J.; Evans, D. F. J. Phys. Chem. 1990, 94, 5921.
-
[45]
(45) Flockhart, B. D. J. Colloid Sci. 1961, 16, 484.
-
[46]
(46) Stead, J. A.; Taylor, H. J. Colloid Interface Sci. 1969, 30, 482.
-
[47]
(47) Kabir-ud-Din; Siddiqui, U. S.; Kumar, S.; Dar, A. A. Colloid Polym. Sci. 2006, 284, 807.
-
[48]
(48) Ruiz, C. C.; Diaz-Lopez, L.; Aguiar, J. J. Colloid Interface Sci. 2007, 305, 293.
-
[49]
(49) Becher, P. Nonionic Surfactants, Schick, M. J. Ed.; Marcel Dekker: New York, 1967.
-
[50]
(50) Lopez-Fontan, J. L.; Costa, J.; Ruso, J. M.; Prieto, G.; Sarmiento, F. J. Chem. Eng. Data 2004, 49, 1008.
-
[51]
(51) Kabir-ud-Din; Rub, M. A.; Naqvi, A. Z. J. Phys. Chem. B 2010, 114, 6354.
-
[52]
(52) Zana, R. J. Colloid Interface Sci. 1980, 78, 330.
-
[53]
(53) Asakawa, T.; Kitano, H.; Ohta, A.; Miyagishi, S. J. Colloid Interface Sci. 2001, 242, 284.
-
[54]
(54) Okano, T.; Tamura, T.; Nanoka, T.; Ueda, S.; Lee, S.; Sugihara, G. Langmuir 2000, 16, 3777.
- [55]
-
[56]
(56) Taboada, P.; Ruso, J. M.; Garcia, M.; Mosquera, V. Colloids Surf. A 2001, 179, 125.
-
[57]
(57) Taboada, P.; Martinez-Landeira, P.; Ruso, J. M.; Garcia, M.; Mosquera, V. Colloids Surf. A 2002, 197, 95.
-
[1]
-
-
[1]
Xinpin Pan , Yongjian Cui , Zhe Wang , Bowen Li , Hailong Wang , Jian Hao , Feng Li , Jing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567
-
[2]
Qiangwei Wang , Huijiao Liu , Mengjie Wang , Haojie Zhang , Jianda Xie , Xuanwei Hu , Shiming Zhou , Weitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743
-
[3]
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
-
[4]
Hong Chen , Mao-Yin Ran , Long-Hua Li , Xin-Tao Wu , Hua Lin . [Cs14Cl][Tm71Se110]: An unusual salt-inclusion chalcogenide containing different valent Tm centers and ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100397-100397. doi: 10.1016/j.cjsc.2024.100397
-
[5]
Ruizhi Yang , Xia Li , Weiping Guo , Zixuan Chen , Hongwei Ming , Zhong-Zhen Luo , Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268
-
[6]
Chaozheng He , Pei Shi , Donglin Pang , Zhanying Zhang , Long Lin , Yingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116
-
[7]
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
-
[8]
Xuebing Jiang , Siyi Wang , Li Zhang , Xian Jiang , Maling Gou . Lidocaine hydrochloride loaded isomaltulose microneedles for efficient local anesthesia of the skin. Chinese Chemical Letters, 2024, 35(4): 108686-. doi: 10.1016/j.cclet.2023.108686
-
[9]
Ya Song , Mingxia Zhou , Zhu Chen , Huali Nie , Jiao-Jing Shao , Guangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200
-
[10]
Liang Ming , Dan Liu , Qiyue Luo , Chaochao Wei , Chen Liu , Ziling Jiang , Zhongkai Wu , Lin Li , Long Zhang , Shijie Cheng , Chuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387
-
[11]
Linghui Zou , Meng Cheng , Kaili Hu , Jianfang Feng , Liangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129
-
[12]
Fengjie Liu , Fansu Meng , Zhenjiang Yang , Huan Wang , Yuehong Ren , Yu Cai , Xingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335
-
[13]
Jiahao Xie , Jin Liu , Bin Liu , Xin Meng , Zhuang Cai , Xiaoqin Xu , Cheng Wang , Shijie You , Jinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236
-
[14]
Kailong Zhang , Chao Zhang , Luanhui Wu , Qidong Yang , Jiadong Zhang , Guang Hu , Liang Song , Gaoran Li , Wenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618
-
[15]
Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254
-
[16]
Yan Cheng , Hai-Quan Yao , Ya-Di Zhang , Chao Shi , Heng-Yun Ye , Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358
-
[17]
Junhan Luo , Qi Qing , Liqin Huang , Zhe Wang , Shuang Liu , Jing Chen , Yuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483
-
[18]
Kuan Deng , Fei Yang , Zhi-Qi Cheng , Bi-Wen Ren , Hua Liu , Jiao Chen , Meng-Yao She , Le Yu , Xiao-Gang Liu , Hai-Tao Feng , Jian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464
-
[19]
Ningyue Xu , Jun Wang , Lei Liu , Changyang Gong . Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. Chinese Chemical Letters, 2024, 35(8): 109225-. doi: 10.1016/j.cclet.2023.109225
-
[20]
Yihan Zhou , Duo Gao , Yaying Wang , Li Liang , Qingyu Zhang , Wenwen Han , Jie Wang , Chunliu Zhu , Xinxin Zhang , Yong Gan . Worm-like micelles facilitate the intestinal mucus diffusion and drug accumulation for enhancing colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108967-. doi: 10.1016/j.cclet.2023.108967
-
[1]
Metrics
- PDF Downloads(629)
- Abstract views(1564)
- HTML views(1)