Citation: LIU Dong, SHEN Jun, LI Ya-Jie, LIU Nian-Ping, LIU Bin. Pore Structures of Carbon Aerogels and Their Effects on Electrochemical Supercapacitor Performance[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 843-849. doi: 10.3866/PKU.WHXB201202172 shu

Pore Structures of Carbon Aerogels and Their Effects on Electrochemical Supercapacitor Performance

  • Received Date: 23 November 2011
    Available Online: 17 February 2012

    Fund Project: 国家自然科学基金(11074189) (11074189)上海市科委纳米专项(11nm0501600) 资助项目 (11nm0501600)

  • Control of the pore structures of carbon aerogels (CAs) was investigated by changing the sol-gel polymerization and activation conditions. The morphologies and physical properties of the CAs and KOH activated carbon aerogels (ACAs) were characterized by scanning electron microscopy (SEM) and N2 adsorption isotherms. The electrochemical performances of the CAs and ACAs as electrode materials were characterized using cyclic voltammetry (CV), a galvanostatic charge-discharge test, and electrochemical impedance spectroscopy (EIS). The results showed that the well developed threedimensional nano-network structures and the reasonable pore size distributions of the CAs have great effect on their electrochemical performance in supercapacitors. Because of abundant mesopores and a high specific surface area (1480 m2·g-1), the specific capacitance of a ACA electrode in 6 mol·L-1 KOH electrolyte was approximately 216 F·g-1 at a scan rate of 100 mV·s-1. A simple model was used to investigate the role of the pores in electrochemical performance.
  • 加载中
    1. [1]

      (1) Frackowiak, E.; Beguin, F. Carbon 2001, 39, 937.  

    2. [2]

      (2) Conway, B. E. Electrochemical Supercapacitors Scientific Fundamentals and Technological Applications; Kluwer Academic/ Plenum Publishers: NewYork, 1999.

    3. [3]

      (3) Lu, X. J.; Dou, H.; Yang, S. D.; Hao, L.; Zhang, F.; Zhang, X. G. Acta Phys.-Chim. Sin. 2011, 27, 2333. [卢向军, 窦辉, 杨苏东, 郝亮, 张方, 张校刚. 物理化学学报, 2011, 27, 2333.]

    4. [4]

      (4) Xue, R.; Yan, J.W.; Tian, Y.; Yi, B. L. Acta Phys.- Chim. Sin. 2011, 27, 2340. [薛荣, 阎景旺, 田颖, 衣宝廉. 物理化学学报, 2011, 27, 2340.]

    5. [5]

      (5) Cai, J. J.; Kong, L.B.; Zhang, J.; Luo, Y. C.; Kang, L. Chin. Chem. Lett. 2010, 21, 1509.  

    6. [6]

      (6) Pekala, R.W.; Farmer, J. C.; Alviso, C. T.; Tran, T. D.; Mayer, S. T.; Miller, J. M.; Dunn, B. J. Non-Cryst. Solids 1998, 225, 74.  

    7. [7]

      (7) Li, J.;Wang, X. Y.;Wang, Y.; Huang, Q. H.; Dai, C. L.; Gamboa, S.; Sebastian, P. J. J. Non-Cryst. Solids 2008, 354, 19.  

    8. [8]

      (8) Saliger, R.; Fischer, U.; Herta, C.; Fricke, J. J. Non-Cryst. Solids 1998, 225, 81.  

    9. [9]

      (9) Xu, Z. J.; Ji, T.; Zhao, L.;Wang,W. Y.; Yang, C. Y.; Gan, L. H. Acta Phys.- Chim. Sin. 2012, 28, 361. [徐子颉, 吉涛, 赵蕾, 王玮衍, 杨春艳, 甘礼华. 物理化学学报, 2012, 28, 361.]

    10. [10]

      (10) Liu, Y. F.; Hu, Z. H.; Xu, K; Zheng, X.W.; Gao, Q. Acta Phys. -Chim. Sin/ 2008, 24, 1143. [刘亚菲, 胡中华, 鄢许琨, 郑祥伟, 高强. 物理化学学报, 2008, 24, 1143.]  

    11. [11]

      (11) Lin, C.; Ritter, J. A.; Popov, B. N. J. Electrochem. Soc. 1999, 146, 3639.  

    12. [12]

      (12) Wang, J. B.; Yang, X. Q.;Wu, D. C.; Fu, R.W.; Dresselhausc, M. S.; Dresselhausc, G. J. Power Sources 2008, 185, 589.  

    13. [13]

      (13) Shi, H. Electrochim. Acta 1996, 41, 1633.  

    14. [14]

      (14) Wang, J.; Chen, M. M.;Wang, C. Y.;Wang, J. Z.; Zheng, J. M. J. Power Sources 2011, 196, 550.  

    15. [15]

      (15) Zhuang, X. G.; Yang, Y. S.; Ji, Y. J.; Yang, D. P.; Tang, Z. Y. Acta Phys. -Chim. Sin. 2003, 19, 689. [庄新国,杨裕生, 嵇友菊, 杨冬平, 唐致远. 物理化学学报, 2003, 19, 689.]

    16. [16]

      (16) Aegerter, M. A.; Leventis, N.; Koebel, M. M. Aerogels Handbook; Springer: New York, 2011; pp 813-826.

    17. [17]

      (17) Pekala, R.W. J. Mater. Sci. 1989, 24, 3221.

    18. [18]

      (18) Chmiola, J.; Yushin, G.; tsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Science 2006, 313, 1760.  

    19. [19]

      (19) Kiyohara, K. J.; Sugino, T. S.; Asaka, K. J. J. Chem. Phys. 2010, 132, 144705.  

    20. [20]

      (20) Barbieri, O.; Hahn, M.; Herzog, A. Carbon 2005, 43, 1303.  

    21. [21]

      (21) Largeot, C.; Portet, C.; Chmiola, J.; Taberna, P. L.; tsi, Y.; Simon, P. J. Am. Chem. Soc. 2008, 130 , 2730.  

  • 加载中
    1. [1]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    4. [4]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    5. [5]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    6. [6]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    7. [7]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    8. [8]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    9. [9]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    12. [12]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    13. [13]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    14. [14]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    15. [15]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    16. [16]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    17. [17]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    18. [18]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    19. [19]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    20. [20]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

Metrics
  • PDF Downloads(1193)
  • Abstract views(2739)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return