Citation: TANG Hong-Chang, ZHANG Chang-Hua, LI Ping, WANG Li-Dong, YE Bin, LI Xiang-Yuan. Experimental Study of Autoignition Characteristics of Kerosene[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 787-791. doi: 10.3866/PKU.WHXB201202161 shu

Experimental Study of Autoignition Characteristics of Kerosene

  • Received Date: 5 December 2011
    Available Online: 16 February 2012

    Fund Project: 国家自然科学基金(91016002)资助项目 (91016002)

  • The ignition delay times of gas-phase kerosene/air mixtures were measured behind reflected shock waves, using side-wall pressure and CH* emission measurements in a heated shock tube. The experiments were performed over the temperature range of 1100-1500 K, at pressures of 2.0×105 and 4.0× 105 Pa, and for equivalence ratios (Φ) of 0.2, 1.0, and 2.0. The effects of temperature, pressure, and equivalence ratio on the ignition delay time were investigated. The global activation energy for kerosene/air varies significantly when the equivalence ratio changes from 0.2 to 1.0, whereas the global activation energy at an equivalence ratio of 1.0 is almost the same as that at 2.0. Three correlations for the ignition delay time under three different equivalence ratios were deduced. The current data were compared with available kinetic mechanisms, and were found to be in od agreement with the predictions of Honnet et al. Chemical mechanism sensitivity analyses for different equivalence ratios were performed; the results showed that the ignition sensitivity at an equivalence ratio of 0.2 is quite different from those at 1.0 and 2.0.
  • 加载中
    1. [1]

      (1) Briker, Y.; Ring, Z.; Iacchelli, A.; McLean, N.; Rahimi, P. M.; Fairbridge, C. Energy Fuels 2001, 15, 23.  

    2. [2]

      (2) Powell, O. A.; Edwards, J. T.; Norris, R. B.; Numbers, K. E. J. Propul. Power 2001, 17, 1170.  

    3. [3]

      (3) Maurice, L. Q.; Lander, H.; Edwards, T.; Harrison,W. E., III. Fuel 2001, 80, 747.  

    4. [4]

      (4) A sta, A.; Cernansky, N. P.; Miller, D. L.; Faravelli, T.; Ranzi, E. Exp. Therm. Fluid Sci. 2004, 28, 701.  

    5. [5]

      (5) Curran, E. T. J. Propul. Power 2001, 17, 1138.  

    6. [6]

      (6) Vasu, S. S.; Davidson, D. F.; Hanson, R. K. Combust. Flame 2008, 152, 125.  

    7. [7]

      (7) Dagaut, P. Phys. Chem. Chem. Phys.2002, 4, 2079.

    8. [8]

      (8) Davidson, D. F.; Hanson, R. K. Int. J. Chem. Kinet. 2004, 36, 510.  

    9. [9]

      (9) Dean, A. J.; Penyazkov, O. G.; Sevruk, K. L.; Varatharajan, B. Proc. Combust. Inst. 2007, 31, 2481.  

    10. [10]

      (10) Kumar, K.; Sung, C. J. Combust. Flame 2010, 157, 676.  

    11. [11]

      (11) Davidson, D. F.; Horning, D. C.; Herbon, J.; Hanson, R. K. Proc. Combust. Inst. 2000, 28, 1687.  

    12. [12]

      (12) Zhang, Y. J.; Huang, Z. H.;Wang, J. H.; Xu, S. L. Chin. Sci. Bull. 2011, 56, 1399. [张英佳, 黄佐华, 王金华, 徐胜利. 科学通报, 2011, 56, 1399.]  

    13. [13]

      (13) Dagaut, P.; Cathonnet, M. Prog. Energy Combust. Sci. 2006, 32, 48.  

    14. [14]

      (14) Ranzi, E. available at: http: //www.chem.polimi.it/ CRECKModeling/html, 2006.

    15. [15]

      (15) Honnet, S.; Seshadri, K.; Niemann, U. Proc. Combust. Inst. 2009, 32, 485.  

    16. [16]

      (16) Davidson, D. F.; Gauthier,B. M.; Hanson, R. K. Proc. Combust. Inst. 2005, 30, 1175.  

    17. [17]

      (17) Shen, H. P. S.; Vanderover, J.; Oehlschlaeger, M. A. Proc. Combust. Inst. 2009, 32, 165.  

    18. [18]

      (18) Orme, J. P.; Curran, H. J.; Simmie, J. M. J. Phys. Chem. A 2006, 110, 114.  

    19. [19]

      (19) Vanderover, J.; Oehlschlaeger, M. A. Int. J. Chem. Kinet. 2009, 41, 82.  

    20. [20]

      (20) Benjamin, A. K.; Bergthorson, J. M. Energy Fuels 2010, 24, 396.  

    21. [21]

      (21) Oehlschlaeger, M. A.; Shen, H. P. S.; Frassoldati, A.; Pierucci, S.; Ranzi, E. Energy Fuels 2009, 23, 1464.  

    22. [22]

      (22) Shen, H. P. S.; Oehlschlaeger, M. A. Combust. Flame 2009, 156, 1053.  

    23. [23]

      (23) Bikas, G. Kinetic Mechanisms for Hydrocarbon Ignition; Doktor der Ingenieurwissenschaften thesis, available at http: // deposit.ddb.de/cgi-bin/dokserv?idn =964932857, RWTH Aachen University, Fakultät für Maschinenwesen, 2001.  

    24. [24]

      (24) Roubaud, A.; Minetti, R.; Sochet, L. R. Combust. Flame 2000, 121, 535.  

    25. [25]

      (25) Hua, X. X.;Wang, J. B.;Wang, Q. D.; Tan, N. X.; Li, X. Y. Acta Phys. -Chim.Sin. 2011, 27, 2755. [华晓筱, 王静波, 王全德, 谈宁馨, 李象远. 物理化学学报, 2011, 27, 2755.]

    26. [26]

      (26) Kumar, K.; Mittal, G.; Sung, C. J.; Law, C. K. Combust. Flame 2008, 153, 343.  

  • 加载中
    1. [1]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    4. [4]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    5. [5]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    6. [6]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    7. [7]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    8. [8]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    9. [9]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    10. [10]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    11. [11]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    12. [12]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    13. [13]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    14. [14]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    15. [15]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    16. [16]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    17. [17]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    18. [18]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    19. [19]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    20. [20]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

Metrics
  • PDF Downloads(708)
  • Abstract views(2201)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return