Citation: YANG Zhi-Bin, DING Wei-Zhong. Reaction Pathway for Reforming Coke Oven Gas over NiO/M Catalyst in an Oxygen Permeation Membrane Reactor[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 935-941. doi: 10.3866/PKU.WHXB201202133 shu

Reaction Pathway for Reforming Coke Oven Gas over NiO/M Catalyst in an Oxygen Permeation Membrane Reactor

  • Received Date: 22 October 2011
    Available Online: 13 February 2012

    Fund Project: 国家高技术研究发展计划(863)(2006AA11A189) (863)(2006AA11A189) 江苏科技大学人才引进(35271103) (35271103)

  • The reaction pathway for reforming coke oven gas (COG) in an oxygen permeation membrane was analyzed. Through the reforming experiments of H2+N2, CH4+N2, CO+N2, H2+CH4+N2 mixtures, with or without a catalyst and the catalyst bed, the reaction scheme is proposed: H2 in COG is absorbed and dissociates on Ni particle on catalyst, the H* of dissociation migrates to high active site (“triphase boundary”) and reacts with diffused oxygen or lattice oxygen on film surface to form H2O. The CH4 also could be dissociated on active metal surface to form CH3* and H*. The H2O formed reacts with the C species to form H2 and CO. At last the residual H2O reacts with the residual CH4 on the catalyst bed to form H2 and CO.
  • 加载中
    1. [1]

      (1) Chen, J. X.; Qiu, Y. J.; Zhang, J. Y.; Su,W. H. Acta Phys . -Chim. Sin. 2004, 20, 76. [陈吉祥, 邱业君, 张继炎, 苏万华. 物理化学学报, 2004, 20, 76.]

    2. [2]

      (2) Ai, X. P.; Yue, B. H.;Wang, X. G.; Yang, J.; Lu, X. G.; Ding,W. Z. Acta Phys . -Chim. Sin. 2009, 25, 1517. [艾馨鹏, 岳宝华, 汪学广, 杨军, 鲁雄刚, 丁伟中. 物理化学学报, 2009, 25, 1517.]

    3. [3]

      (3) Yang, Z. B.; Zhang, Y.W.; Zhang, Y. Y.; Ding,W. Z.; Shen, P. J.; Liu, Y.; Zhou, Y. D.; Huang, S. Q. Acta Phys . -Chim. Sin. 2010, 26, 350.

    4. [4]

      (4) Zhang, Y. Y.; Li, Q.; Shen, P. J.; Liu, Y.; Yang, Z. B.; Ding,W. Z.; Lu, X. G. Int. J. Hydrog. Energy 2008, 33, 3311.  

    5. [5]

      (5) Yang, Z. B.; Ding,W. Z.; Zhang, Y. Y.; Lu, X. G.; Zhang, Y.W.; Shen, P. J. Int. J. Hydrogen Energy 2010, 35, 6239.  

    6. [6]

      (6) Cheng, H.W.; Zhang, Y.W.; Lu, X. G.; Ding,W. Z.; Li, Q. Energy & Fuels 2009, 23, 414.  

    7. [7]

      (7) Yang, Z. B.; Zhang, Y. Y.; Ding,W. Z.; Zhang, Y.W.; Shen, P. J.; Zhou, Y. D.; Liu, Y.; Huang, S. Q.; Lu, X. G. J .Natural Gas Chemistry 2009, 18, 407.  

    8. [8]

      (8) Nakagawa, K.; Ikenalca, N.; Teng, Y.; Kobayaslii, T.; Suzulci, T. J. Catal. 1999, 186, 405.  

    9. [9]

      (9) Ashcroft, A. T.; Cheetham, A. K.; Foord, J. S.; Green, M. L. H.; Grey, C. P.; Murrell, A. J.; Vernon, P. D. F. Nature 1990, 344, 319.  

    10. [10]

      (10) Hickman, D. A.; Schmidt, L. D. Science 1993, 259, 343.  

    11. [11]

      (11) Hickman, D. A.; Schmidt, L. D. J. Catal. 1992,138, 267.  

    12. [12]

      (12) Shao, Z. P.; Xiong, G. X.; Dong, H.; Yang,W. S.; Lin, L.W. Separ. Purif. Technol. 2001, 25, 97.  

    13. [13]

      (13) Ikeguchi, M.; Mimura, T.; Sekine, Y.; Kikuchi, E.; Matsukata, M. Appl. Catal. A: Gen. 2005, 290, 212.

    14. [14]

      (14) Wang, B. Dense Oxygen Permeable Membranes and Membrane-based Process. Ph. D. Dissertation, University of Science and Technology of China, Hefei, 2006. [汪波. 高温致密透氧膜材料和膜过程研究[D]. 合肥: 中国科技大学, 2006]

    15. [15]

      (15) Wang, H. H.; Cong, Y.; Yang,W. S. Catal. Today 2003, 82, 157.  

    16. [16]

      (16) Chen, C. S.; Feng, S. J.; Ran, S.; Zhu, D. C.; Liu,W.; Bouwmeester, H. J. M. Angew Chem. Int. Edit. 2003, 42, 5196.  

    17. [17]

      (17) FisherⅡ, J. C.; Steven, S.; Chuang, C. Catal. Commun. 2009, 10, 772.  

    18. [18]

      (18) Zhu, D. C.; Xu, X.Y.; Feng, S. J.; Liu,W.; Chen, C. S. Catal. Today 2003, 82, 151.  

    19. [19]

      (19) Karmer, R.; Andre, M. J. Catal. 1979, 58, 287.  

    20. [20]

      (20) Sen, B.; Falconer, J. L.; Mao, T. F.; Tu, M. J. Catal. 1990, 126, 465.  

    21. [21]

      (21) Shen, P. J.; Ding,W. Z.; Zhou, Y. D.; Huang, S. Q. Applied Surface Science 2010, 256, 5094.  

    22. [22]

      (22) Zhang,W. X.; Smit, J.; Van Sint Annaland, M.; Kuipers, J. A. M. J. Membr. Sci. 2007, 291, 19.  

  • 加载中
    1. [1]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    2. [2]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    3. [3]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    4. [4]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    7. [7]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    8. [8]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    9. [9]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    10. [10]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    11. [11]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    12. [12]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    13. [13]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    14. [14]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    15. [15]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    16. [16]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    17. [17]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    18. [18]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    19. [19]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    20. [20]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

Metrics
  • PDF Downloads(656)
  • Abstract views(1499)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return