Citation: QIU Yi-Xiang, WANG Shu-Guang. Electronic Structures of Group IB Metal-Ethylene Complexes [N{(Me)C(Ph)N}2]M-C2H4 (M=Cu, Ag, Au)[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 811-817. doi: 10.3866/PKU.WHXB201202082
-
The geometries, electronic structures, and bonding energies of coinage metal-ethylene complexes LM-C2H4 (L=[N{(Me)C(Ph)N}2]; M=Cu, Ag, Au) were investigated by Hartree-Fock, Møller- Plesset perturbation (MP2), second-order approximate coupled-cluster (CC2), and density functional theory (DFT) methods. The MP2, CC2, and DFT methods performed well in reproducing the experimental geometric features of LM-C2H4. The bonding in LM-C2H4 can be described as a synergistic combination of σ-donor and π-acceptor interactions between the LM and C2H4 π-system. Both σ-donor and π-acceptor contributions increased the C=C bond length and decreased the C=C bond strength by removing electron density from the bonding π orbital and increasing electron density in the anti-bonding π* orbital, respectively. The results of natural population analysis and energy decomposition analysis show that the LM→C2H4 back-donation contribution to the LM-C2H4 bonding is higher than that of the C2H4→LM donation, but this order is reversed in the M+-C2H4 systems. Therefore, it is not appropriate to use M+-C2H4 as a computational model for electronic structures studies of LM-C2H4. The effects of changing the metal on the structural and electronic properties, such as C=C bond length, charge populations of C2H4, and LM-C2H4 interactions, were large. Compared with LCu and LAg, LAu had the strongest ability to accept and donate electrons. Consequently, it showed the maximum reduction in the π orbital electron density and increase in the π* orbital density. Therefore, activation of the C=C bond by LAu was more effective than by LCu and LAg. However, the effects of electron donating or withdrawing ability of the auxiliary ligands on the above properties were small.
-
-
[1]
(1) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3079.
-
[2]
(2) Fuerstner, A.; Davies, P.W. Angew. Chem. Int. Edit. 2007, 46, 3410.
-
[3]
(3) Xue,W. J.; Zhang, X. Y.; Li, P.; Liu, Z. T.; Hao, Z. P.; Ma, C. Y. Acta Phys. -Chim. Sin. 2011, 27, 1730. [薛雯娟, 张新艳, 李鹏, 刘昭铁, 郝郑平, 麻春艳. 物理化学学报, 2011, 27, 1730.]
-
[4]
(4) Sun, L. L.; Zhao, Y. H.; Han, Q. Z.;Wen, H. Acta Phys. -Chim. Sin. 2010, 26, 3345. [孙丽丽, 赵月红, 韩清珍, 温浩. 物理化学学报, 2010, 26, 3345.]
-
[5]
(5) Dias, H. V. R.;Wu, J. Eur . J. Inorg. Chem. 2008, 509.
-
[6]
(6) Bond, G. C.; Thompson, D. T. Catal. Rev.-Sci. Eng. 1999, 41, 319.
-
[7]
(7) Flores, J. A.; Dias, H. V. R. Inorg. Chem. 2008, 47, 4448.
-
[8]
(8) Chiong, H. A.; Daugulis, O. Organometallics 2006, 25, 4054.
-
[9]
(9) Brown, T. J.; Dickens, M. G.;Widenhoefer, R. A. J. Am. Chem. Soc. 2009, 131, 6350.
-
[10]
(10) Dias, H. V. R.; Flores, J. A.;Wu, J.; Kroll, P. J. Am. Chem. Soc. 2009, 131, 11249.
-
[11]
(11) Zhou, M.; ng, T.; Qiao, X.; Tong, H.; Guo, J.; Liu, D. Inorg. Chem. 2011, 50, 1926.
-
[12]
(12) Hertwig, R. H.; Koch,W.; Schroeder, D.; Schwarz, H.; Hrusak, J.; Schwerdtfeger, P. J. Phys. Chem. 1996, 100, 12253.
-
[13]
(13) Nechaev, M. S.; Rayon, V. M.; Frenking, G. J. Phys. Chem. A 2004, 108, 3134.
-
[14]
(14) Christiansen, O.; Koch, H.; Jørgensen, P. Chem. Phys. Lett. 1995, 243, 409.
- [15]
- [16]
-
[17]
(17) Ziegler, T.; Rauk, A. Theor. Chim. Acta 1977, 46, 1.
-
[18]
(18) TURBOMOLE V6.3 2011, a Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989- 2007, TURBOMOLE GmbH, since 2007; available from http:// www.turbomole.com.
-
[19]
(19) Weigend, F.; Ahlrichs, R. Phys . Chem . Chem . Phys. 2005, 7, 3297.
-
[20]
(20) Fonseca, G. C.; Snijders, J. G.; te Velde, G.; Baerends, E. J. Theor. Chem. Acc. 1998, 99, 391.
-
[21]
(21) Bartell, L. S.; Roth, E. A.; Hollowell, C. D.; Kuchitsu, K.; Young, J. E., Jr. J. Chem. Phys. 1965, 42, 2683.
-
[22]
(22) Schmidbaur, H.; Schier, A. Organometallics 2010, 29, 2.
-
[23]
(23) Fedorov, A.; Couzijn, E. P. A.; Na rnova, N. S.; Boyarkin, O. V.; Rizzo, T. R.; Chen, P. J. Am. Chem. Soc. 2010, 132, 13789.
- [24]
- [25]
-
[1]
-
-
[1]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[2]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[3]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[4]
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
-
[5]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[6]
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
-
[7]
Liyang ZHANG , Dongdong YANG , Ning LI , Yuanyu YANG , Qi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079
-
[8]
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
-
[9]
Ji Qi , Jianan Zhu , Yanxu Zhang , Jiahao Yang , Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050
-
[10]
Keweiyang Zhang , Zihan Fan , Liyuan Xiao , Haitao Long , Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084
-
[11]
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
-
[12]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[13]
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
-
[14]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[15]
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
-
[16]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[17]
Zuozhong Liang , Lingling Wei , Yiwen Cao , Yunhan Wei , Haimei Shi , Haoquan Zheng , Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103
-
[18]
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
-
[19]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[20]
Cheng Zheng , Shiying Zheng , Yanping Zhang , Shoutian Zheng , Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131
-
[1]
Metrics
- PDF Downloads(713)
- Abstract views(2547)
- HTML views(34)