Citation: CHE Qian, ZHANG Fang, ZHANG Xiao-Gang, LU Xiang-Jun, DING Bing, ZHU Jia-Jia. Preparation of Ordered Mesoporous Carbon/NiCo2O4 Electrode and Its Electrochemical Capacitive Behavior[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 837-842. doi: 10.3866/PKU.WHXB201202074 shu

Preparation of Ordered Mesoporous Carbon/NiCo2O4 Electrode and Its Electrochemical Capacitive Behavior

  • Received Date: 31 October 2011
    Available Online: 7 February 2012

    Fund Project: 国家自然科学基金(20873064) (20873064) 江苏省自然科学基金(BK2011030) (BK2011030)高等学校博士学科点专项科研基金(20060287026)资助项目 (20060287026)

  • OMC/NiCo2O4 composite was prepared by co-precipitation with ordered mesoporous carbon (OMC) as a support. The crystalline structure and morphology of the composite were investigated by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, and transmission electron microscopy (TEM). TEM images showed that NiCo2O4 was uniformly coated on the OMC. Cyclic voltammetry and galvanostatic charge-discharge were used to investigate the electrochemical performance of the OMC/ NiCo2O4 composite. The specific capacitances of the OMC/NiCo2O4 composite with a mass fraction of 40% NiCo2O4 were 577.0 F·g-1 at a current density of 1 A·g-1 and 470.8 F·g-1 at 8 A·g-1. The specific capacitance remains at 508.4 F·g-1 after 2000 cycles at a current density of 2 A·g-1, with a capacitance retention of 92.7%.
  • 加载中
    1. [1]

      (1) Conway, B. E. J. Electrochem. Soc. 1991, 138, 1539.  

    2. [2]

      (2) Miller, J. R. Electrochim. Acta 2006, 52, 1703.  

    3. [3]

      (3) Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Adv. Mater. 2010, 22, E28.

    4. [4]

      (4) Zhang, F.; Yuan, C. Z.; Zhang, X. G.; Zhang, L. J.; Xu, K. Acta Phys. - Chim. Sin. 2010, 26 (12), 3175. [张方, 原长洲, 张校刚, 章罗江, 徐科. 物理化学学报, 2010, 26 (12), 3175.]

    5. [5]

      (5) Yuan, C. Z.; Gao, B.; Shen, L. F.; Yang, S. D. ; Hao, L. ; Lu, X. J.; Zhang, F.; Zhang, L. J.; Zhang, X. G. Nanoscale 2011, 3, 529.  

    6. [6]

      (6) Hwang, S.W.; Hyun, S. H. J. Non-Cryst. Solids 2004, 347, 238.  

    7. [7]

      (7) Kim, N. D.; Kim,W.; Joo, J. B.; Oh, S.; Kim, P.; Kim, Y.; Yi, J. J. Power Sources 2008, 180, 671.  

    8. [8]

      (8) Li,W.; Chen, D.; Li, Z.; Shi, Y.;Wan, Y.; Huang, J.; Yang, J.; Zhao, D.; Jiang, Z. Electrochem. Commun. 2007, 9, 569.  

    9. [9]

      (9) Hu, C. C.; Chang, K. H.; Lin, M. C.;Wu, Y. T. Nano Lett. 2006, 6, 2690.  

    10. [10]

      (10) Sugimoto,W.; Iwata, H.; Yokoshima, K.; Murakami, Y.; Takasu, Y. J. Phys. Chem. B 2005, 109, 7330.  

    11. [11]

      (11) Wu, Z. S.; Ren,W. C.;Wang, D.W.; Li, F.; Liu, B. L.; Cheng, H. M. ACS Nano 2010, 4, 5835.  

    12. [12]

      (12) Xia, X. H.; Tu, J. P.; Mai, Y. J.;Wang, X. L.; Gu, C. D.; Zhao, X. B. J. Mater. Chem. 2011, 21, 9319.  

    13. [13]

      (13) Cao, C. Y.; Guo.W.; Cui, Z. M.; Song,W. G.; Cai,W. J. Mater. Chem. 2011, 21, 3204.

    14. [14]

      (14) Hu, C. C.; Chen,W. C.; Chang, K. H. J. Electrochem. Soc. 2004, 151, A281.  

    15. [15]

      (15) Yu, L. Q.; Chen, S. L.; Chang, S.; Li, Y. H.; Gao, Y. Y.;Wang, G. L.; Cao, D. X. Acta Phys .-Chim. Sin. 2011, 27 (3), 615. [于丽秋, 陈书礼, 常莎, 李云虎, 高胤义, 王贵领, 曹殿学. 物理化学学报.2011, 27 (3), 615.]

    16. [16]

      (16) Wei, T. Y.;Chen, C. H.; Chien, H. C.; Lu, S. Y.; Hu, C. C. Adv. Mater. 2010, 22, 347.  

    17. [17]

      (17) Gupta V.; Gupta S.; Miura N. J. Power Sources 2010, 195, 3757.  

    18. [18]

      (18) Yin,W. Y.; Chen, X.; Cao, M. H.; Hu, C.W.;Wei, B. Q. J. Phys. Chem. C. 2009, 113, 15897.  

    19. [19]

      (19) Lu, B. P.; Bai, J.; Bo, X. J.; Zhu, L. D.; Guo, L. P. Electrochim. Acta 2010, 55, 8724.  

    20. [20]

      (20) Cui, B.; Lin, H.; Li, J. B.; Li, X.; Yang, J.; Tao, J. Adv. Funct. Mater. 2008, 18, 1441.

    21. [21]

      (21) Singh, R. N.; Koenig, J. F.; Poillerat, G.; Chartier, P. J. Electrochem. Soc. 1990, 137, 1408.  

    22. [22]

      (22) Chi, B.; Lin, H.; Li, J.;Wang, N.; Yang, J. Int. J. Hydrog. Energy 2006, 31, 1210.  

    23. [23]

      (23) Aboutalebi, S. H.; Chidembo, A. T.; Chidembo, Salari, M.; Konstantinov, K.;Wexler, D.; Liu, H. K.; Dou, S. X. Energy Environ. Sci. 2011, 4, 1855.  

    24. [24]

      (24) Meher, S. K.; Justin, P.; Rao, G. R. ACS Appl. Mater. Interfaces 2011, 3, 2063.  

    25. [25]

      (25) Wang, Y. G.; Li, H. Q.; Xia, Y. Y. Adv. Mater. 2006, 18, 2619.  

  • 加载中
    1. [1]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    4. [4]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    5. [5]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    6. [6]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    7. [7]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    8. [8]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    11. [11]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    12. [12]

      Tiejun Su . The Construction and Application of the Calculation Formula for Endpoint Error in Precipitation Titration: A Case Study of the Mohr Method. University Chemistry, 2024, 39(11): 384-387. doi: 10.12461/PKU.DXHX202402039

    13. [13]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    14. [14]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    15. [15]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    16. [16]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    17. [17]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    18. [18]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    19. [19]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(1782)
  • Abstract views(2141)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return