Citation: GUO Xin, TAN See-Hua, SHANG Zhi-Jun, GUO Yu-Cong, ZHANG Yun-Hong. Confocal Raman Spectroscopy Studies on the Interactions between NH4+, NO3- and H2O in Supersaturated NH4NO3 Droplets[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 766-772. doi: 10.3866/PKU.WHXB201202021 shu

Confocal Raman Spectroscopy Studies on the Interactions between NH4+, NO3- and H2O in Supersaturated NH4NO3 Droplets

  • Received Date: 25 October 2011
    Available Online: 2 February 2012

    Fund Project: 国家自然科学基金(41175119, 20933001, 20873006)资助项目 (41175119, 20933001, 20873006)

  • High signal to noise (S/N) ratio Raman spectra of NH4NO3 droplets deposited on a quartz substrate were obtained from dilute to supersaturated states by reducing the relative humidity (RH) of the environment, allowing for accurate control over the concentration of solute within the droplet. When the RH was reduced from 72.1% to 37.9%, the peak position of the v1-NO3- band of the NH4NO3 droplet did not shift from its original position at 1048 cm-1 and a similar full width at half-maximum (FWHM) of 10 cm-1 was also observed. It was concluded that the replacement of H2O molecules hydrogen-bonded with the O atoms of NO3- with NH4+ ions leaves the frequency of v1-NO3- relatively unchanged, indicating that both H2O and NH4+ forming hydrogen bonds have the same strength. From component band analysis in the spectral range of 2500-4000 cm-1, six peaks at 2890, 3090, 3140, 3220, 3402, 3507 cm-1 were identified and assigned. The first four components were assigned to the second overtone of NH4+ umbrella bending, the combination band of NH4+ umbrella bending and rocking vibrations, the NH4+ symmetric stretching vibration, and the NH4+ antisymmetric stretching vibration. The latter two peaks originated from strong and weak hydrogen bonds. The signature of the strong hydrogen bonding component was observed to decrease in intensity with the decrease in RH over the full range from 72.1% to 37.9%, while the signature of the weak hydrogen bonding component was shown to increase as the RH was reduced. The observed trend in the hydrogen bonding component resulted from the interactions between NH4+ and NO3- .
  • 加载中
    1. [1]

      (1) Friese, E.; Ebel, A. J. Phys. Chem. A 2010, 114, 11595.  

    2. [2]

      (2) palakrishnan, S.; Jungwirth, P.; Tobias, D. J.; Allen, H. C. J. Phys. Chem. B 2005, 109, 8861.  

    3. [3]

      (3) Cziczo, D. J.; Abbatt, J. J. Phys. Chem. A 2000, 104, 2038.  

    4. [4]

      (4) Lightstone, J. M.; Onasch, T. B.; Imre, D. S. J. Phys. Chem. A 2000, 104, 9337.  

    5. [5]

      (5) Ma, Q. X.; Liu, Y. C. J. Phys. Chem. A 2010, 114, 4232.  

    6. [6]

      (6) Yeung, M. C.; Lee, A.; Chan, C. K. Aerosol Sci. Technol. 2009, 43, 387.  

    7. [7]

      (7) Jordanov, N.; Zellner, R. PCCP 2006, 8, 2759.  

    8. [8]

      (8) Yeung, M. C.; Chan, C. K. Aerosol Sci. Technol. 2010, 44, 269.  

    9. [9]

      (9) Tang, I. N. J. Geophys. Res. 1996, 101, 19245.  

    10. [10]

      (10) Richardson, C. B.; Hightower, R. L. Atmos. Environ. 1987, 21, 971.  

    11. [11]

      (11) Botti, A.; Bruni, F.; Imberti, S.; Ricci, M. A.; Soper, A. K. J. Chem. Phys. 2004, 120, 10154.  

    12. [12]

      (12) Dang, L. X.; Chang, T. M.; Roeselova, M.; Garrett, B. C.; Tobias, D. J. J. Chem. Phys. 2006, 124.  

    13. [13]

      (13) Kameda, Y.; Saitoh, H.; Uemura, O. Bull. Chem. Soc. Jpn. 1993, 66, 1919.  

    14. [14]

      (14) Waterland, M. R.; Kelley, A. M. J. Chem. Phys. 2000, 113, 6760.  

    15. [15]

      (15) Butt, N. R.; Nilsson, M.; Jakobsson, A.; Nordberg, M.; Pettersson, A.;Wallin, S.; Ostmark, H. IEEE Geosci. Remote S 2011, 8, 517.  

    16. [16]

      (16) Irish, D. E.; Chen, H. J. Appl. Spectrosc. 1971, 25, 112.

    17. [17]

      (17) Guo, X.; Shou, J.; Zhang, Y.; Reid, J. P. Analyst 2010, 135, 495.  

    18. [18]

      (18) Guo, X.; Xiao, H.;Wang, F.; Zhang, Y. J. Phys. Chem. A 2010, 114, 6480.  

    19. [19]

      (19) Li, X.;Wang, F.; Lu, P.; Dong, J.;Wang, L.; Zhang, Y. J. Phys. Chem. B 2006, 110, 24993.  

    20. [20]

      (20) Xiao, H.;Wang, L.; Zhang, Y. Spectrosc. Spect. Anal. 2009, 29, 3315.

    21. [21]

      (21) Wang, F.; Zhang, Y. Spectrosc. Spect. Anal. 2011, 31, 700.

    22. [22]

      (22) Li, Y.; Xie, P.; Qin, M.; Qu, X.; Hu, L. Spectrosc. Spect. Anal. 2009, 29, 196.

    23. [23]

      (23) Miller, A. G.; MacKlin, J.W. J. Phys. Chem. 1985, 89, 1193.  

    24. [24]

      (24) Frost, R. L.; James, D.W.; Roger, A.; Mayes, R. E. J. Phys. Chem. 1982, 86, 3840.  

    25. [25]

      (25) Dong, J. L.; Li, X. H.; Zhao, L. J.; Xiao, H. S.;Wang, F.; Guo, X.; Zhang, Y. H. J. Phys. Chem. B 2007, 111, 12170.

    26. [26]

      (26) http://www.aim.env.uea.ac.uk/aim/aim.php.  

    27. [27]

      (27) Wang, F.; Zhang, Y. H.; Li, S. H.;Wang, L. Y.; Zhao, L. J. Anal. Chem. 2005, 77, 7148.  

    28. [28]

      (28) Vollmar, P. M. J. Chem. Phys. 1963, 39, 2236.  

    29. [29]

      (29) Spinner, E. Spectrochim. Acta A 2003, 59, 1441.  

    30. [30]

      (30) Bengtsson, L. A.; Frostemark, F.; Holmberg, B. J. Chem. Soc. Faraday Trans. 1994, 90, 559.  

    31. [31]

      (31) Price, J. M.; Crofton, M.W.; Lee, Y. T. J. Phys. Chem. 1991, 95, 2182.  

    32. [32]

      (32) Tang, H. C.; Torrie, B. H. J. Phys. Chem. Solids 1978, 39, 845.  

    33. [33]

      (33) Jorgensen,W. L.; Gao, J. J. Phys. Chem. 1986, 90, 2174.  

    34. [34]

      (34) Li, X. H.;Wang F.; Lu, P. D.; Dong, J. L.;Wang, L. Y.; Zhang, Y. H. J. Phys. Chem. B 2006, 110, 24993.  

    35. [35]

      (35) Bergstrom, P. A.; Lindgren, J.; Kristiansson, O. J. Phys. Chem. 1991, 95, 8575.  

    36. [36]

      (36) Yang, D.; Xu,W. Spectrosc. Spect. Anal. 2009, 29, 2694.

  • 加载中
    1. [1]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    2. [2]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    3. [3]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    4. [4]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    5. [5]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    6. [6]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    7. [7]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    8. [8]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    9. [9]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    10. [10]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    11. [11]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    12. [12]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    13. [13]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    14. [14]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    15. [15]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    16. [16]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    17. [17]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    18. [18]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    19. [19]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    20. [20]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

Metrics
  • PDF Downloads(812)
  • Abstract views(1959)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return