Citation: GU Jia-Fang, LU Chun-Hai, CHEN Wen-Kai, CHEN Yong, XU Ke, HUANG Xin, ZHANG Yong-Fan. Electronic Structures of Uranyl(VI) Carbonate Complexes in the Aqueous Phase[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 792-798. doi: 10.3866/PKU.WHXB201201171 shu

Electronic Structures of Uranyl(VI) Carbonate Complexes in the Aqueous Phase

  • Received Date: 26 September 2011
    Available Online: 17 January 2012

    Fund Project: 国家自然科学基金(10676007) (10676007)福建省高等学校新世纪优秀人才计划(HX2006-103)资助项目 (HX2006-103)

  • A systematic study of series of non-hydrated and hydrated Cn/m uranyl carbonate complexes (n is number of carbonate ligands, and m is number of water molecules) in the aqueous phase was carried out using relativistic density functional theory. The conductor-like screening model was used to calculate solvent effects. The zeroth-order regular approximation was used to account for scalar relativistic effects and spin-orbit coupling relativistic effects. Time-dependent density functional theory with the inclusion of spin-orbit coupling relativistic effects was used to calculate electronic transitions using the statistically averaged orbital potentials. The results indicate that carbonate ligands play an important role in the geometric and electronic transition properties of the complex. The stability of the C3/0 carbonate complex in the aqueous phase may be attributed to the involvement of 5f components in the highest occupied bonding orbital. The addition of carbonate ligands caused a blue shift in the maximum wavelength and high intensity absorptions in the near visible region.
  • 加载中
    1. [1]

      (1) Clark, D. L.; Hobart, D. E.; Neu, M. P. Chem. Rev. 1995, 95, 25.  

    2. [2]

      (2) Meinrath, G. J. Radioanal. Nucl. Chem. 1996, 211, 349.  

    3. [3]

      (3) Nguyen Trung, C.; Begun, G. M.; Palmer, D. A. Inorg. Chem. 1992, 31, 5280.  

    4. [4]

      (4) McGlynn, S. P.; Smith, J. K.; Neely,W. C. J. Chem. Phys. 1961, 35, 105.  

    5. [5]

      (5) de Jong,W. A.; Aprà, E.;Windus, T. L.; Nichols, J. A.; Harrison, R. J.; Gutowski, K. E.; Dixon, D. A. J. Phys. Chem. A 2005, 109, 11568.  

    6. [6]

      (6) Gu, J. F.; Lu, C. H.; Chen,W. K.; Xu, Y.; Zheng, J. D. Acta Phys. -Chim. Sin. 2009, 25, 655. [辜家芳, 陆春海, 陈文凯, 许莹, 郑金德. 物理化学学报, 2009, 25, 655.]

    7. [7]

      (7) Allen, P. G.; Bucher, J. J.; Clark, D. L.; Edelstein, N. M.; Ekberg, S. A.; hdes, J.W.; Hudson, E. A.; Kaltsoyannis, N.; Lukens,W.W. Inorg. Chem. 1995, 34, 4797.  

    8. [8]

      (8) Docrat, T. I.; Mosselmans, J. F.W.; Charnock, J. M.; Whiteley, M.W.; Collison, D.; Livens, F. R.; Jones, C.; Edmiston, M. J. Inorg. Chem. 1999, 38, 1879.  

    9. [9]

      (9) Su, J.; Li, J. Prog. Chem. 2011, 23, 1329. [苏静, 李隽. 化学进展, 2011, 23, 1329.]

    10. [10]

      (10) Wang, D. Q.; Gunsteren,W. F. v. Prog. Chem. 2011, 23, 1566. [王东琪, Gunsteren,W. F. v. 化学进展, 2011, 23, 1566.]

    11. [11]

      (11) Hu, H. S.;Wu, G. S.; Li, J. J. Nucl. Radiochem. 2009, 31, 25. [胡憾石, 吴国是, 李隽. 核化学与放射化学, 2009, 31, 25.]

    12. [12]

      (12) Liu,W. J. Prog. Chem. 2007, 19, 833. [刘文剑. 化学进展, 2007, 19, 833.]

    13. [13]

      (13) Cinnéide, S. ó.; Scanlan, J. P.; Hynes, M. J. J. Inorg. Nucl. Chem. 1975, 37, 1013.  

    14. [14]

      (14) Scanlan, J. P. J. Inorg. Nucl. Chem. 1977, 39, 635.  

    15. [15]

      (15) Su, J.; Zhang, K.; Schwarz,W. H. E.; Li, J. Inorg. Chem. 2011, 50, 2082.  

    16. [16]

      (16) Matsika, S.; Pitzer, R. M.; Reed, D. T. J. Phys. Chem. A 2000, 104, 11983.  

    17. [17]

      (17) Kaltsoyannis, N.; Hay, P. J.; Li, J.; Blaudeau, J. P.; Bursten, B. E. Theoretical Studies of the Electronic Structure of Compounds of the Actinide Elements. In The Chemistry of the Actinide and Transactinide Elements; Morss, L. R., Edelstein, N. M., Fuger, J., Eds.; Springer: Netherlands, 2006; p 1893.  

    18. [18]

      (18) de Jong,W. A.; Harrison, R. J.; Nichols, J. A.; Dixon, D. A. Theor. Chem. Acc. 2001, 107, 22.  

    19. [19]

      (19) ADF2010, SCM, Theoretical Chemistry; Vrije Universiteit: Amsterdam, The Netherlands; http://www.scm.com.

    20. [20]

      (20) Guerra, C. F.; Snijders, J. G.; Velde, G. T.; Baerends, E. J. Theor. Chem. Acc. 1998, 99, 391.

    21. [21]

      (21) Velde, G. T.; Bickelhaupt, F. M.; Baerends, E. J.; Guerra, C. F.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. J. Comput. Chem. 2001, 22, 931.  

    22. [22]

      (22) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.  

    23. [23]

      (23) van Lenthe, E.; Baerends, E. J. J. Comput. Chem. 2003, 24, 1142.  

    24. [24]

      (24) van Lenthe, E.; Ehlers, A. E.; Baerends, E. J. J. Chem. Phys. 1999, 110, 8943.  

    25. [25]

      (25) van Lenthe, E.; Baerends, E. J.; Snijders, J. G. J. Chem. Phys. 1994, 101, 9783.  

    26. [26]

      (26) van Lenthe, E.; Baerends, E. J.; Snijders, J. G. J. Chem. Phys. 1993, 99, 4597.  

    27. [27]

      (27) Lee, B.; Richards, F. M. J. Mol. Biol. 1971, 55, 379.  

    28. [28]

      (28) Richards, F. M. Annu. Rev. Biophys. Bioeng. 1977, 6, 151.  

    29. [29]

      (29) Perdew, J. P.; Ruzsinsky, A.; Tao, J.; Staroverov, V. N.; Scuseria, G. E.; Csonka, G. I. J. Chem. Phys. 2005, 123, 062201.  

    30. [30]

      (30) Schipper, P. R. T.; Gritsenko, O. V.; van Gisbergen, S. J. A.; Baerends, E. J. J. Chem. Phys. 2000, 112, 1344.  

    31. [31]

      (31) Vázquez, J.; Bo, C.; Poblet, J. M.; de Pablo, J.; Bruno, J. Inorg. Chem. 2003, 42, 6136.  

    32. [32]

      (32) Graziani, R.; Bombieri, G.; Forsellini, E. J. Chem. Soc. Dalton Trans. 1972, 2059.  

    33. [33]

      (33) Spencer, S.; Gagliardi, L.; Handy, N. C.; Ioannou, A. G.; Skylaris, C. K.;Willetts, A.; Simper, A. M. J. Phys. Chem. A 1999, 103, 1831.  

    34. [34]

      (34) Bardin, N.; Rubini, P.; Madic, C. Radiochim. Acta 1998, 83, 189.

    35. [35]

      (35) Christ, C. L.; Clark, J. R.; Evans, H. T. J. Science 1955, 121, 472.  

    36. [36]

      (36) Cromer, D. T.; Harper, P. E. Acta Crystallogr. 1955, 8, 847.

    37. [37]

      (37) Finch, R. J.; Cooper, M. A.; Hawthorne, F. C.; Ewing, R. C. Can. Mineral. 1999, 37, 929.

    38. [38]

      (38) Matar, S. F. Chem. Phys. 2010, 372, 46.  

    39. [39]

      (39) Pashalidis, I.; Czerwinski, K. R.; Fanghanel, T.; Kim, J. I. Radiochim. Acta 1997, 76, 55.

    40. [40]

      (40) Rude,W. Los Alamos Science 2000, 26, 412.

    41. [41]

      (41) Meinrath, G. J. Radioanal. Nucl. Chem. 1997, 224, 119.  

    42. [42]

      (42) Meinrath, G.; Klenze, R.; Kim, J. I. Radiochim. Acta 1996, 74, 81.

    43. [43]

      (43) Havel, J.; Soto-Guerrero, J.; Lubal, P. Polyhedron 2002, 21, 1411.  

    44. [44]

      (44) Tian, G.; Rao, L. J. Chem. Thermodyn. 2009, 41, 569.  

    45. [45]

      (45) Rao, L.; Tian, G. J. Chem. Thermodyn. 2008, 40, 1001.  

    46. [46]

      (46) Tian, G.; Rao, L. Inorg. Chem. 2009, 48, 6748.  

    47. [47]

      (47) ng, C. M. S.; Poineau, F.; Czerwinski, K. R. Radiochim. Acta 2007, 95, 439.  

  • 加载中
    1. [1]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    2. [2]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    6. [6]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    7. [7]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    8. [8]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    9. [9]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    10. [10]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    11. [11]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    12. [12]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    13. [13]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    14. [14]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    16. [16]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    17. [17]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    18. [18]

      Huijuan LiZhu WangJiagen GengRuiping SongXiaoyin LiuChaochen FuSi Li . Current advances in UV-based advanced oxidation processes for the abatement of fluoroquinolone antibiotics in wastewater. Chinese Chemical Letters, 2025, 36(4): 110138-. doi: 10.1016/j.cclet.2024.110138

    19. [19]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

    20. [20]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

Metrics
  • PDF Downloads(1144)
  • Abstract views(2267)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return