Citation: GU Jia-Fang, LU Chun-Hai, CHEN Wen-Kai, CHEN Yong, XU Ke, HUANG Xin, ZHANG Yong-Fan. Electronic Structures of Uranyl(VI) Carbonate Complexes in the Aqueous Phase[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 792-798. doi: 10.3866/PKU.WHXB201201171 shu

Electronic Structures of Uranyl(VI) Carbonate Complexes in the Aqueous Phase

  • Received Date: 26 September 2011
    Available Online: 17 January 2012

    Fund Project: 国家自然科学基金(10676007) (10676007)福建省高等学校新世纪优秀人才计划(HX2006-103)资助项目 (HX2006-103)

  • A systematic study of series of non-hydrated and hydrated Cn/m uranyl carbonate complexes (n is number of carbonate ligands, and m is number of water molecules) in the aqueous phase was carried out using relativistic density functional theory. The conductor-like screening model was used to calculate solvent effects. The zeroth-order regular approximation was used to account for scalar relativistic effects and spin-orbit coupling relativistic effects. Time-dependent density functional theory with the inclusion of spin-orbit coupling relativistic effects was used to calculate electronic transitions using the statistically averaged orbital potentials. The results indicate that carbonate ligands play an important role in the geometric and electronic transition properties of the complex. The stability of the C3/0 carbonate complex in the aqueous phase may be attributed to the involvement of 5f components in the highest occupied bonding orbital. The addition of carbonate ligands caused a blue shift in the maximum wavelength and high intensity absorptions in the near visible region.
  • 加载中
    1. [1]

      (1) Clark, D. L.; Hobart, D. E.; Neu, M. P. Chem. Rev. 1995, 95, 25.  

    2. [2]

      (2) Meinrath, G. J. Radioanal. Nucl. Chem. 1996, 211, 349.  

    3. [3]

      (3) Nguyen Trung, C.; Begun, G. M.; Palmer, D. A. Inorg. Chem. 1992, 31, 5280.  

    4. [4]

      (4) McGlynn, S. P.; Smith, J. K.; Neely,W. C. J. Chem. Phys. 1961, 35, 105.  

    5. [5]

      (5) de Jong,W. A.; Aprà, E.;Windus, T. L.; Nichols, J. A.; Harrison, R. J.; Gutowski, K. E.; Dixon, D. A. J. Phys. Chem. A 2005, 109, 11568.  

    6. [6]

      (6) Gu, J. F.; Lu, C. H.; Chen,W. K.; Xu, Y.; Zheng, J. D. Acta Phys. -Chim. Sin. 2009, 25, 655. [辜家芳, 陆春海, 陈文凯, 许莹, 郑金德. 物理化学学报, 2009, 25, 655.]

    7. [7]

      (7) Allen, P. G.; Bucher, J. J.; Clark, D. L.; Edelstein, N. M.; Ekberg, S. A.; hdes, J.W.; Hudson, E. A.; Kaltsoyannis, N.; Lukens,W.W. Inorg. Chem. 1995, 34, 4797.  

    8. [8]

      (8) Docrat, T. I.; Mosselmans, J. F.W.; Charnock, J. M.; Whiteley, M.W.; Collison, D.; Livens, F. R.; Jones, C.; Edmiston, M. J. Inorg. Chem. 1999, 38, 1879.  

    9. [9]

      (9) Su, J.; Li, J. Prog. Chem. 2011, 23, 1329. [苏静, 李隽. 化学进展, 2011, 23, 1329.]

    10. [10]

      (10) Wang, D. Q.; Gunsteren,W. F. v. Prog. Chem. 2011, 23, 1566. [王东琪, Gunsteren,W. F. v. 化学进展, 2011, 23, 1566.]

    11. [11]

      (11) Hu, H. S.;Wu, G. S.; Li, J. J. Nucl. Radiochem. 2009, 31, 25. [胡憾石, 吴国是, 李隽. 核化学与放射化学, 2009, 31, 25.]

    12. [12]

      (12) Liu,W. J. Prog. Chem. 2007, 19, 833. [刘文剑. 化学进展, 2007, 19, 833.]

    13. [13]

      (13) Cinnéide, S. ó.; Scanlan, J. P.; Hynes, M. J. J. Inorg. Nucl. Chem. 1975, 37, 1013.  

    14. [14]

      (14) Scanlan, J. P. J. Inorg. Nucl. Chem. 1977, 39, 635.  

    15. [15]

      (15) Su, J.; Zhang, K.; Schwarz,W. H. E.; Li, J. Inorg. Chem. 2011, 50, 2082.  

    16. [16]

      (16) Matsika, S.; Pitzer, R. M.; Reed, D. T. J. Phys. Chem. A 2000, 104, 11983.  

    17. [17]

      (17) Kaltsoyannis, N.; Hay, P. J.; Li, J.; Blaudeau, J. P.; Bursten, B. E. Theoretical Studies of the Electronic Structure of Compounds of the Actinide Elements. In The Chemistry of the Actinide and Transactinide Elements; Morss, L. R., Edelstein, N. M., Fuger, J., Eds.; Springer: Netherlands, 2006; p 1893.  

    18. [18]

      (18) de Jong,W. A.; Harrison, R. J.; Nichols, J. A.; Dixon, D. A. Theor. Chem. Acc. 2001, 107, 22.  

    19. [19]

      (19) ADF2010, SCM, Theoretical Chemistry; Vrije Universiteit: Amsterdam, The Netherlands; http://www.scm.com.

    20. [20]

      (20) Guerra, C. F.; Snijders, J. G.; Velde, G. T.; Baerends, E. J. Theor. Chem. Acc. 1998, 99, 391.

    21. [21]

      (21) Velde, G. T.; Bickelhaupt, F. M.; Baerends, E. J.; Guerra, C. F.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. J. Comput. Chem. 2001, 22, 931.  

    22. [22]

      (22) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.  

    23. [23]

      (23) van Lenthe, E.; Baerends, E. J. J. Comput. Chem. 2003, 24, 1142.  

    24. [24]

      (24) van Lenthe, E.; Ehlers, A. E.; Baerends, E. J. J. Chem. Phys. 1999, 110, 8943.  

    25. [25]

      (25) van Lenthe, E.; Baerends, E. J.; Snijders, J. G. J. Chem. Phys. 1994, 101, 9783.  

    26. [26]

      (26) van Lenthe, E.; Baerends, E. J.; Snijders, J. G. J. Chem. Phys. 1993, 99, 4597.  

    27. [27]

      (27) Lee, B.; Richards, F. M. J. Mol. Biol. 1971, 55, 379.  

    28. [28]

      (28) Richards, F. M. Annu. Rev. Biophys. Bioeng. 1977, 6, 151.  

    29. [29]

      (29) Perdew, J. P.; Ruzsinsky, A.; Tao, J.; Staroverov, V. N.; Scuseria, G. E.; Csonka, G. I. J. Chem. Phys. 2005, 123, 062201.  

    30. [30]

      (30) Schipper, P. R. T.; Gritsenko, O. V.; van Gisbergen, S. J. A.; Baerends, E. J. J. Chem. Phys. 2000, 112, 1344.  

    31. [31]

      (31) Vázquez, J.; Bo, C.; Poblet, J. M.; de Pablo, J.; Bruno, J. Inorg. Chem. 2003, 42, 6136.  

    32. [32]

      (32) Graziani, R.; Bombieri, G.; Forsellini, E. J. Chem. Soc. Dalton Trans. 1972, 2059.  

    33. [33]

      (33) Spencer, S.; Gagliardi, L.; Handy, N. C.; Ioannou, A. G.; Skylaris, C. K.;Willetts, A.; Simper, A. M. J. Phys. Chem. A 1999, 103, 1831.  

    34. [34]

      (34) Bardin, N.; Rubini, P.; Madic, C. Radiochim. Acta 1998, 83, 189.

    35. [35]

      (35) Christ, C. L.; Clark, J. R.; Evans, H. T. J. Science 1955, 121, 472.  

    36. [36]

      (36) Cromer, D. T.; Harper, P. E. Acta Crystallogr. 1955, 8, 847.

    37. [37]

      (37) Finch, R. J.; Cooper, M. A.; Hawthorne, F. C.; Ewing, R. C. Can. Mineral. 1999, 37, 929.

    38. [38]

      (38) Matar, S. F. Chem. Phys. 2010, 372, 46.  

    39. [39]

      (39) Pashalidis, I.; Czerwinski, K. R.; Fanghanel, T.; Kim, J. I. Radiochim. Acta 1997, 76, 55.

    40. [40]

      (40) Rude,W. Los Alamos Science 2000, 26, 412.

    41. [41]

      (41) Meinrath, G. J. Radioanal. Nucl. Chem. 1997, 224, 119.  

    42. [42]

      (42) Meinrath, G.; Klenze, R.; Kim, J. I. Radiochim. Acta 1996, 74, 81.

    43. [43]

      (43) Havel, J.; Soto-Guerrero, J.; Lubal, P. Polyhedron 2002, 21, 1411.  

    44. [44]

      (44) Tian, G.; Rao, L. J. Chem. Thermodyn. 2009, 41, 569.  

    45. [45]

      (45) Rao, L.; Tian, G. J. Chem. Thermodyn. 2008, 40, 1001.  

    46. [46]

      (46) Tian, G.; Rao, L. Inorg. Chem. 2009, 48, 6748.  

    47. [47]

      (47) ng, C. M. S.; Poineau, F.; Czerwinski, K. R. Radiochim. Acta 2007, 95, 439.  

  • 加载中
    1. [1]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    2. [2]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    3. [3]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    4. [4]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    5. [5]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    6. [6]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    7. [7]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    8. [8]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    9. [9]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    10. [10]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    11. [11]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    12. [12]

      Sifang Zhang Yanli Tan Yu Tao Jiaoyan Zhao Haihong Zhu . Exploration and Practice of Ideological and Political Cases in the Course of Chemistry History and Methodology. University Chemistry, 2024, 39(10): 377-388. doi: 10.12461/PKU.DXHX202312067

    13. [13]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    14. [14]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    17. [17]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    20. [20]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

Metrics
  • PDF Downloads(1144)
  • Abstract views(2221)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return