Citation: SUN De-Lin, ZHOU Jian. Dissipative Particle Dynamics Simulations on Mesoscopic Structures of Nafion and PVA/Nafion Blend Membranes[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 909-916. doi: 10.3866/PKU.WHXB201201164 shu

Dissipative Particle Dynamics Simulations on Mesoscopic Structures of Nafion and PVA/Nafion Blend Membranes

  • Received Date: 27 October 2011
    Available Online: 16 January 2012

    Fund Project: 教育部新世纪优秀人才支持计划(NCET-07-0313) (NCET-07-0313) 国家自然科学基金(20706019, 20876052) (20706019, 20876052)广东省自然科学基金(S2011010002078)资助项目 (S2011010002078)

  • Dissipative particle dynamics simulations were performed to study the mesoscopic structures of both humidified Nafion and polyvinyl alcohol (PVA)/Nafion blend membranes. Simulation results show that a phase-segregated microstructure is formed in both humidified Nafion and PVA/Nafion blend membranes. In humidified Nafion membrane, water molecules and sulfonate groups form tubular shaped water clusters. As the water content is increased, the size of water cluster is enlarged and water clusters percolate to form a continuous water channel. In the PVA/Nafion blend membrane, PVA, water molecules, and sulfonate groups together form hydrophilic domains. The mesoscopic structure of the PVA/Nafion blend membrane is affected by both the PVA/Nafion blend ratio and the water content in the membrane. When the PVA mass fraction is relatively low, PVA is predominantly distributed along the sulfonate groups of Nafion and as the PVA mass fraction is increased, PVA alone forms a distinct phase in the membrane. When the water content in the membrane is relatively low, water molecules are predominantly dissolved in PVA and as the water content is increased, spherical water clusters emerge in the membrane. This work provides further guidance for the development of PVA modified Nafion membranes for direct methanol fuel cell applications.
  • 加载中
    1. [1]

      (1) Chen, Y.; Tang, Y.W.; Liu, C. P.; Xing,W.; Lu, T. H. Acta Phys. -Chim. Sin. 2005, 21, 458. [陈煜, 唐亚文, 刘长鹏, 邢巍, 陆天虹. 物理化学学报, 2005, 21, 458.]

    2. [2]

      (2) Li, T.; Zhong, G. M.; Yang, Y. Progress in Chemistry 2010, 22, 523. [李涛, 钟贵明, 杨勇. 化学进展, 2010, 22, 523.]

    3. [3]

      (3) Deluca, N.W.; Elabd, Y. A. J. Polym. Sci. B: Polym. Phys. 2006, 44, 2201.  

    4. [4]

      (4) Jie, X. F.; Shen, P. K. Battery Bimonthly 2009, 39, 222. [揭雪飞, 沈培康. 电池, 2009, 39, 222.]

    5. [5]

      (5) Qiao, Z.W.;Wu, Y. L.; Li, X.W.; Zhou, J. Fluid Phase Equilib. 2011, 302, 14.  

    6. [6]

      (6) Deluca, N.W.; Elabd, Y. A. J. Membr. Sci. 2006, 282, 217.  

    7. [7]

      (7) Jang, S. S.; Molinero, V.; Cagin, T.; ddard,W. A. J. Phys. Chem. B 2004, 108, 3149.  

    8. [8]

      (8) Urata, S.; Irisawa, J.; Takada, A.; Shinoda,W.; Tsuzuki, S.; Mikami, M. J. Phys. Chem. B 2005, 109, 17274.  

    9. [9]

      (9) Vishnyakov, A.; Neimark, A. V. J. Phys. Chem. B 2001, 105, 9586.  

    10. [10]

      (10) Zhu, S. H.; Yan, L. M.; Ji, X. B.; Shao, C. L.; Lu,W. C. Acta Phys. -Chim. Sin. 2010, 26, 2659. [朱素华, 严六明, 纪晓波, 邵长乐, 陆文聪. 物理化学学报, 2010, 26, 2659.]

    11. [11]

      (11) Dorenbos, G.; Suga, Y. J. Membr. Sci. 2009, 330, 5.  

    12. [12]

      (12) Malek, K.; Eikerling, M.;Wang, Q. P.; Liu, Z. S.; Otsuka, S.; Akizuki, K.; Abe, M. J. Chem. Phys. 2008, 129, 204702.  

    13. [13]

      (13) Wescott, J. T.; Qi, Y.; Subramanian, L.; Capehart, T.W. J. Chem. Phys. 2006, 124, 134702.  

    14. [14]

      (14) Wu, D. S.; Paddison, S. J.; Elliott, J. A. Macromolecules 2009, 42, 3358.  

    15. [15]

      (15) Wu, D. S.; Paddison, S. J.; Elliott, J. A.; Hamrock, S. J. Langmuir 2010, 26, 14308.  

    16. [16]

      (16) Yamamoto, S.; Hyodo, S. A. Polym. J. 2003, 35, 519.  

    17. [17]

      (17) Groot, R. D.;Warren, P. B. J. Chem. Phys. 1997, 107, 4423.  

    18. [18]

      (18) Groot, R. D.; Rabone, K. L. Biophys. J. 2001, 81, 725.  

    19. [19]

      (19) Gierke, T. D.; Munn, G. E.;Wilson, F. C. J. Polym. Sci. B: Polym. Phys. 1981, 19, 1687.

    20. [20]

      (20) Hsu,W. Y.; Gierke, T. D. J. Membr. Sci. 1983, 13, 307.  

    21. [21]

      (21) Fujimura, M.; Hashimoto, T.; Kawai, H. Macromolecules 1981, 14, 1309.  

    22. [22]

      (22) Fujimura, M.; Hashimoto, T.; Kawai, H. Macromolecules 1982, 15, 136.  

    23. [23]

      (23) Yeager, H. L.; Steck, A. J. Electrochem. Soc. 1981, 128, 1880.  

    24. [24]

      (24) Litt, M. H. Polym. Prepr. 1997, 38, 80.

    25. [25]

      (25) Schmidt-Rohr, K.; Chen, Q. Nat. Mater. 2008, 7, 75.  

  • 加载中
    1. [1]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    2. [2]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    5. [5]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    6. [6]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    7. [7]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    8. [8]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    9. [9]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    10. [10]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    11. [11]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    12. [12]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    13. [13]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    14. [14]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    15. [15]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    16. [16]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    17. [17]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    18. [18]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    19. [19]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    20. [20]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

Metrics
  • PDF Downloads(1267)
  • Abstract views(2377)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return