Citation: JIN Yu, CHEN Hong-Yuan, CHEN Ming-Hai, LIU Ning, LI Qing-Wen. Carbon Nanotube/Polyaniline/Graphene Composite Paper and Its Electrochemical Capacitance Behaviors[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 609-614. doi: 10.3866/PKU.WHXB201201162
-
Flexible carbon nanotube/polyaniline/graphene (CNT/PANI/GR) composite papers were prepared by electrochemical polymerization of PANI on cyclic voltammetry electrochemical oxidized CNT (CV-CNT) papers and the successive adsorption of GR. CNT, PANI, and GR provided a flexible conducting network skeleton, faradaic pseudocapacitive material, and surface conductivity modification properties, respectively. The composite papers exhibited a sandwich structure with an outer layer of GR and an inner layer composite network of CV-CNT/PANI, taking full advantage of the superior properties of the three components. The structure and morphology were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The chemical capacitance characteristics were studied thoroughly. It was shown that PANI nanowhiskers wrapped around the CV-CNT surface evenly. The composite paper exhibited enhanced capacitance and high current charge/discharge characteristics as a supercapacitor electrode. The specific capacitance level could reach 415 F·g-1 at a current density of 0.5 A·g-1 and maintain a level of 106 F·g-1 at the higher current density of 20 A·g-1. In the protection of GR, the composite maintained a higher capacitance than CV-CNT/PANI after 1000 cycles, suggesting that the CV-CNT/PANI/GR composite would be an ideal flexible electrode material for a supercapacitor.
-
-
[1]
(1) Meng, C. Z.; Liu, C. H.; Chen, L. Z.; Hu, C. H.; Fan, S. S. Nano Lett. 2010, 10, 4025.
-
[2]
(2) Wang, H. L.; Hao, Q. L.; Yang, X. J.; Lu, L. D.;Wang, X. Electrochem. Commun. 2009, 11, 1158.
-
[3]
(3) Jyongsik, J.; Joonwon, B.; Moonjung, C.; Seong-Ho, Y. Carbon 2005, 43, 2730.
-
[4]
(4) Liu, C. G.; Yu, Z. N.; Neff, D.; Zhamu, A.; Jang, B. Z. Nano Lett. 2010, 10, 4863.
-
[5]
(5) Huang, Z. B.; Gao, D. S.; Li, C. H.; Lei, G. T.; Zhou, J. Acta Chim. Sin. 2007, 11, 6. [黄再波, 高德淑, 李朝晖, 雷钢铁, 周姬. 化学学报, 2007, 11, 6.]
-
[6]
(6) Zhang, L. Y.; He, S. J.; Chen, S. L.; Guo, Q. H.; Hou, H. Q. Acta Phys. -Chim. Sin. 2010, 26, 3181. [张雷勇, 何水剑, 陈水亮, 郭乔辉, 侯豪情. 物理化学学报, 2010, 26, 3181.]
-
[7]
(7) Kim, C.; N c, B. T. N.; Yang, K. S.; Kojima, M.; Kim, Y. A.; Kim, Y. J.; Endo, M.; Yang, S. C. Adv. Mater. 2007, 19, 2341.
- [8]
-
[9]
(9) Yan, X. B.; Tai, Z. X.; Chen, J. T.; Xue, Q. J. Nanoscale 2011, 3, 212.
-
[10]
(10) Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Nature 2009, 457, 706.
-
[11]
(11) Han, T. H.; Lee,W. J.; Lee, D. H.; Kim, J. E.; Choi, E. Y.; Kim, S. O. Adv. Mater. 2010, 22, 2060.
-
[12]
(12) Zhu, Y.W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai,W.W.; Ferreira, P. J.; Pirkle, A.;Wallace, R. M.; Cychosz, K. A.; Thommes, M.; Su, D.; Stach, E. A.; Ruoff, R. S. Science 2011, 332, 1537.
-
[13]
(13) Cheng, Q.; Tang, J.; Ma, J.; Zhang, H.; Norio, S. Y.; Qin, L. C. Carbon 2011, 49, 2917.
-
[14]
(14) Wang, D.W.; Li, F.; Zhao, J. P.; Ren,W. C.; Chen, Z. G.; Tan, J.;Wu, Z. S.; Ian, G.; Lu, G. Q.; Cheng, H. M. ACS Nano 2009, 3, 1745.
-
[15]
(15) Chou, S. L.;Wang, J. Z.; Chew, S. Y.; Liu, H. K.; Dou, S. X. Electrochem. Commun. 2008, 10, 1724.
-
[16]
(16) Lee, S.W.; Kim, J. Y.; Chen, S. ACS Nano 2010, 4, 3889.
-
[17]
(17) Wu, Z. S.; Ren,W.; Gao, L.; Jiang, C.; Cheng, H. M. Carbon 2009, 47, 493.
-
[18]
(18) Ye, J. S.; Liu, X.; Cui, H. F. Electrochem. Commun. 2005, 7, 249.
-
[19]
(19) Zhang, H.; Cao, G. P.;Wang,W. K.; Yuan, K. G.; Xu, B.; Zhang,W. F.; Cheng, J.; Yang, Y. S. Electrochimica Acta 2009, 54, 1153.
-
[20]
(20) Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B. Nat. Nanotech. 2008, 3, 101.
-
[21]
(21) Kim, B.W.; Chung, H.; Kim,W. J. Phys. Chem. C 2010, 114, 15223.
-
[22]
(22) Wang, Y.; Serrano, S.; Santia -Avilés, J. J. Synth. Metal 2003, 138, 423.
-
[23]
(23) Louarn, G.; Lapkowski, M.; Quillard, S.; Pron, A.; Buisson, J. P.; Lefrant, S. J. Phys. Chem. 1996, 100, 6998.
-
[24]
(24) Yan, X. B.; Han, Z. J.; Yang, Y.; Tay, B. K. Sensor Actuators B 2007, 123, 107.
-
[25]
(25) Wang, Y. G.; Li, H. Q.; Xia, Y. Y. Adv. Mater. 2006, 18, 2619.
-
[26]
(26) Gao, B.; Fu, Q. B.; Su, L. H.; Yuan, C. Z.; Zhang, X. G. Electrochimica Acta 2010, 55, 2311.
-
[27]
(27) Du, B.; Jiang, Q.; Zhao, X. F.; Lin, S. Z.; Mu, P. S.; Zhao, Y. Acta Phys. -Chim. Sin. 2009, 25, 513. [杜冰, 江奇, 赵晓峰, 林孙忠, 幕佩珊, 赵勇. 物理化学学报, 2009, 25, 513.]
-
[1]
-
-
[1]
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
-
[2]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[3]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[4]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[5]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[6]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[7]
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
-
[8]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[9]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[10]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[11]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[12]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[13]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[14]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[15]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[16]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[17]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[18]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[19]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[20]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[1]
Metrics
- PDF Downloads(2187)
- Abstract views(5019)
- HTML views(94)