Citation: JIN Yu, CHEN Hong-Yuan, CHEN Ming-Hai, LIU Ning, LI Qing-Wen. Carbon Nanotube/Polyaniline/Graphene Composite Paper and Its Electrochemical Capacitance Behaviors[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 609-614. doi: 10.3866/PKU.WHXB201201162 shu

Carbon Nanotube/Polyaniline/Graphene Composite Paper and Its Electrochemical Capacitance Behaviors

  • Received Date: 9 October 2011
    Available Online: 16 January 2012

    Fund Project: 苏州市科技项目(SYG201018) (SYG201018)江苏省产学研联合创新项目(BY2011178)资助 (BY2011178)

  • Flexible carbon nanotube/polyaniline/graphene (CNT/PANI/GR) composite papers were prepared by electrochemical polymerization of PANI on cyclic voltammetry electrochemical oxidized CNT (CV-CNT) papers and the successive adsorption of GR. CNT, PANI, and GR provided a flexible conducting network skeleton, faradaic pseudocapacitive material, and surface conductivity modification properties, respectively. The composite papers exhibited a sandwich structure with an outer layer of GR and an inner layer composite network of CV-CNT/PANI, taking full advantage of the superior properties of the three components. The structure and morphology were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The chemical capacitance characteristics were studied thoroughly. It was shown that PANI nanowhiskers wrapped around the CV-CNT surface evenly. The composite paper exhibited enhanced capacitance and high current charge/discharge characteristics as a supercapacitor electrode. The specific capacitance level could reach 415 F·g-1 at a current density of 0.5 A·g-1 and maintain a level of 106 F·g-1 at the higher current density of 20 A·g-1. In the protection of GR, the composite maintained a higher capacitance than CV-CNT/PANI after 1000 cycles, suggesting that the CV-CNT/PANI/GR composite would be an ideal flexible electrode material for a supercapacitor.
  • 加载中
    1. [1]

      (1) Meng, C. Z.; Liu, C. H.; Chen, L. Z.; Hu, C. H.; Fan, S. S. Nano Lett. 2010, 10, 4025.  

    2. [2]

      (2) Wang, H. L.; Hao, Q. L.; Yang, X. J.; Lu, L. D.;Wang, X. Electrochem. Commun. 2009, 11, 1158.  

    3. [3]

      (3) Jyongsik, J.; Joonwon, B.; Moonjung, C.; Seong-Ho, Y. Carbon 2005, 43, 2730.  

    4. [4]

      (4) Liu, C. G.; Yu, Z. N.; Neff, D.; Zhamu, A.; Jang, B. Z. Nano Lett. 2010, 10, 4863.  

    5. [5]

      (5) Huang, Z. B.; Gao, D. S.; Li, C. H.; Lei, G. T.; Zhou, J. Acta Chim. Sin. 2007, 11, 6. [黄再波, 高德淑, 李朝晖, 雷钢铁, 周姬. 化学学报, 2007, 11, 6.]

    6. [6]

      (6) Zhang, L. Y.; He, S. J.; Chen, S. L.; Guo, Q. H.; Hou, H. Q. Acta Phys. -Chim. Sin. 2010, 26, 3181. [张雷勇, 何水剑, 陈水亮, 郭乔辉, 侯豪情. 物理化学学报, 2010, 26, 3181.]

    7. [7]

      (7) Kim, C.; N c, B. T. N.; Yang, K. S.; Kojima, M.; Kim, Y. A.; Kim, Y. J.; Endo, M.; Yang, S. C. Adv. Mater. 2007, 19, 2341.  

    8. [8]

      (8) Laforgue, A. J. Power Sources 2011, 196, 559.  

    9. [9]

      (9) Yan, X. B.; Tai, Z. X.; Chen, J. T.; Xue, Q. J. Nanoscale 2011, 3, 212.  

    10. [10]

      (10) Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Nature 2009, 457, 706.  

    11. [11]

      (11) Han, T. H.; Lee,W. J.; Lee, D. H.; Kim, J. E.; Choi, E. Y.; Kim, S. O. Adv. Mater. 2010, 22, 2060.  

    12. [12]

      (12) Zhu, Y.W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai,W.W.; Ferreira, P. J.; Pirkle, A.;Wallace, R. M.; Cychosz, K. A.; Thommes, M.; Su, D.; Stach, E. A.; Ruoff, R. S. Science 2011, 332, 1537.  

    13. [13]

      (13) Cheng, Q.; Tang, J.; Ma, J.; Zhang, H.; Norio, S. Y.; Qin, L. C. Carbon 2011, 49, 2917.  

    14. [14]

      (14) Wang, D.W.; Li, F.; Zhao, J. P.; Ren,W. C.; Chen, Z. G.; Tan, J.;Wu, Z. S.; Ian, G.; Lu, G. Q.; Cheng, H. M. ACS Nano 2009, 3, 1745.  

    15. [15]

      (15) Chou, S. L.;Wang, J. Z.; Chew, S. Y.; Liu, H. K.; Dou, S. X. Electrochem. Commun. 2008, 10, 1724.  

    16. [16]

      (16) Lee, S.W.; Kim, J. Y.; Chen, S. ACS Nano 2010, 4, 3889.  

    17. [17]

      (17) Wu, Z. S.; Ren,W.; Gao, L.; Jiang, C.; Cheng, H. M. Carbon 2009, 47, 493.  

    18. [18]

      (18) Ye, J. S.; Liu, X.; Cui, H. F. Electrochem. Commun. 2005, 7, 249.  

    19. [19]

      (19) Zhang, H.; Cao, G. P.;Wang,W. K.; Yuan, K. G.; Xu, B.; Zhang,W. F.; Cheng, J.; Yang, Y. S. Electrochimica Acta 2009, 54, 1153.  

    20. [20]

      (20) Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B. Nat. Nanotech. 2008, 3, 101.  

    21. [21]

      (21) Kim, B.W.; Chung, H.; Kim,W. J. Phys. Chem. C 2010, 114, 15223.

    22. [22]

      (22) Wang, Y.; Serrano, S.; Santia -Avilés, J. J. Synth. Metal 2003, 138, 423.  

    23. [23]

      (23) Louarn, G.; Lapkowski, M.; Quillard, S.; Pron, A.; Buisson, J. P.; Lefrant, S. J. Phys. Chem. 1996, 100, 6998.

    24. [24]

      (24) Yan, X. B.; Han, Z. J.; Yang, Y.; Tay, B. K. Sensor Actuators B 2007, 123, 107.  

    25. [25]

      (25) Wang, Y. G.; Li, H. Q.; Xia, Y. Y. Adv. Mater. 2006, 18, 2619.  

    26. [26]

      (26) Gao, B.; Fu, Q. B.; Su, L. H.; Yuan, C. Z.; Zhang, X. G. Electrochimica Acta 2010, 55, 2311.  

    27. [27]

      (27) Du, B.; Jiang, Q.; Zhao, X. F.; Lin, S. Z.; Mu, P. S.; Zhao, Y. Acta Phys. -Chim. Sin. 2009, 25, 513. [杜冰, 江奇, 赵晓峰, 林孙忠, 幕佩珊, 赵勇. 物理化学学报, 2009, 25, 513.]

  • 加载中
    1. [1]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    4. [4]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    5. [5]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    6. [6]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    7. [7]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    8. [8]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    13. [13]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    14. [14]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    15. [15]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    16. [16]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    17. [17]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    18. [18]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    19. [19]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    20. [20]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

Metrics
  • PDF Downloads(2187)
  • Abstract views(5019)
  • HTML views(94)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return