Citation: LI Tian-Tian, WANG Chao-Yang, XING Li-Dan, LI Wei-Shan, PENG Bin, XU Meng-Qing, GU Feng-Long, HU She-Jun. Reaction Mechanism of 1,4-Dimethoxy Benzene as an Overcharge Protection Additive[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 818-822. doi: 10.3866/PKU.WHXB201201132 shu

Reaction Mechanism of 1,4-Dimethoxy Benzene as an Overcharge Protection Additive

  • Received Date: 31 October 2011
    Available Online: 13 January 2012

    Fund Project: 国家自然科学基金-广东省人民政府自然科学联合基金(U1134002) (U1134002)广东省自然科学基金(10351063101000001)资助项目 (10351063101000001)

  • The reaction mechanism of 1,4-dimethoxybenzene (p-DMOB) as an overcharge protection additive for lithium ion batteries was determined by theoretical calculation of density functional theory (DFT) at the level of B3LYP/6-311+G(d,p) and MP2/6-311+G(d,p). It was found that p-DMOB is oxidized prior to the solvents, ethyl methyl carbonate, dimethyl carbonate, and ethylene carbonate, when the lithium ion battery is overcharged. The calculated oxidative potentials of p-DMOB by B3LYP and MP2 methods are well in agreement at 4.12 and 4.05 V (vs Li/Li), respectively. The initial oxidation of p-DMOB involves a one-electron transfer resulting in a radical cation p-DMOB. The corresponding energy variations were 701.24 and 728.27 kJ·mol-1 from B3LYP and MP2 calculations, respectively. The p-DMOB species then loses one proton forming a radical p-DMOB·through the breaking of a C―H bond on the benzene ring, with the corresponding energy variations of 1349.78 and 1810.99 kJ·mol-1 for B3LYP and MP2, respectively. The p-DMOB·species is unstable and copolymerizes forming an insulated polymer with the corresponding energy variations of -553.37 and -1331.20 kJ·mol-1 for B3LYP and MP2, respectively.
  • 加载中
    1. [1]

      (1) Ménard, L.; Fontès, G.; Astier, S. Energy Convers. Manage. 2010, 327.

    2. [2]

      (2) Yu, Y.; Gu, L.; Zhu, C.; Aken, P. A.; Maier, J. J. Am. Chem. Soc. 2009, 131, 15984.  

    3. [3]

      (3) Yao, Z. D.;Wei,W.;Wang, J. L.; Yang, J.; Nuli, Y. N. Acta Phys. -Chim. Sin. 2011, 27, 1005. [姚真东, 魏巍, 王久林, 杨军, 努丽燕娜. 物理化学学报, 2011, 27, 1005.]

    4. [4]

      (4) Fergus, J.W. J. Power Sources 2010, 195, 939.  

    5. [5]

      (5) Xu. J.; Yao,W. H.; Yao, Y.W.;Wang, Z. C.; Yang, Y. Acta Phys. -Chim. Sin. 2009, 25, 201. [许杰, 姚万浩, 姚宜稳, 王周成, 杨勇. 物理化学学报, 2009, 25, 201]

    6. [6]

      (6) Xu, M. Q.; Zuo, X. X.; Li,W. S.; Zhou, H. J.; Liu, J. S.; Yuan, Z. Z. Acta Phys. -Chim. Sin. 2006, 22, 335. [许梦清, 左晓希, 李伟善, 周豪杰, 刘建生, 袁中直. 物理化学学报, 2006, 22, 335.]  

    7. [7]

      (7) Feng, J. K.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Electrochem. Commun. 2007, 9, 25.  

    8. [8]

      (8) Chung, Y. S.; Yoo, S. H.; Kim, C. K. Ind. Eng. Chem. Res. 2009, 48, 4346.  

    9. [9]

      (9) Matsuta, S.; Kato, Y.; Ota, T.; Kurokawa, H.; Yoshimura, S.; Fujitani, S. J. Electrochem. Soc. 2001, 148, A7.

    10. [10]

      (10) Moshkovich, M.; Cojocaru, M.; ttlieb, H. E.; Aurbach, D. J. Electroanal. Chem. 2001, 497, 84.  

    11. [11]

      (11) Xing, L. D.;Wang, C. Y.; Li,W. S.; Xu, M. Q.; Meng, X. L.; Zhao, S. F. J. Phys. Chem. B 2009, 113, 5181.  

    12. [12]

      (12) Xing, L. D.; Li,W. S.;Wang, C. Y.; Gu, F. L.; Xu, M. Q.; Tan, C. L.; Yi, J. J. Phys. Chem. B 2009, 113, 16596.  

    13. [13]

      (13) Balakrishnan, P. G.; Ramesh, R.; Kumar, T. P. J. Power Sources 2006, 155, 401.  

    14. [14]

      (14) Leising, R. A.; Palazzo, M. J.; Takeuchi, E. S.; Takeuchi, K. J. J. Power Sources 2001, 97, 681.  

    15. [15]

      (15) Li, S. L.; Ai, X. P.; Feng, J. K.; Cao, Y. L.; Yang, H. X. J. Power Sources 2008, 184, 553.  

    16. [16]

      (16) Xu, M. Q.; Xing, L. D.; Li,W. S.; Zuo, X. X.; Shu, D.; Li, G. L. J. Power Sources 2008, 184, 427.  

    17. [17]

      (17) Chen, J.; Buhrmester, C.; Dahn, J. R. Electrochem. Solid-State Lett. 2005, 8, A59.

    18. [18]

      (18) Chen, Z. H.; Amine, K. Electrochim. Acta 2007, 53, 453.  

    19. [19]

      (19) Tag ugui, M.; Carré, B.;Willmann, P.; Lemordant, D. J. Power Sources 2007, 174, 1069.  

    20. [20]

      (20) Wang, R. L.; Dahn, J. R. J. Electrochem. Soc. 2006, 153, A1922.

    21. [21]

      (21) Zheng, H. H.;Wang, X. J.; Li, B.; Qin, J. H. Chin. J. Power Sources 2006, 30, 511. [郑洪河, 王显军, 李苞, 秦建华. 电源技术, 2006, 30, 511]

    22. [22]

      (22) Li, T. T.; Xing, L. D.; Li,W. S.; Peng, B.; Xu, M. Q.; Gu, F. L.; Hu, S. J. J. Phys. Chem. A 2011, 115, 4988.  

    23. [23]

      (23) Demartinez, M. C.; Marquez, O. P.; Marquez, J.; Hahn, F.; Beden, B.; Crouigneau, P.; Rakotondrainibe, A.; Lamy, C. Syth. Met. 1997, 88, 187.

    24. [24]

      (24) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, revision B.05; Gaussian Inc.: Pittsburgh, PA, 2003.

    25. [25]

      (25) Abbotto, A.; Streitwieser, A.; Schleyer, P. R. J. Am. Chem. Soc. 1997, 119, 11255.  

    26. [26]

      (26) Wang, Y.; Balbuena, P. B. J. Phys. Chem. A 2001, 105, 9972.  

    27. [27]

      (27) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999.  

    28. [28]

      (28) Trasatti, S. Pure Appl. Chem. 1986, 58, 955.  

  • 加载中
    1. [1]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    4. [4]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    5. [5]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    6. [6]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    7. [7]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    8. [8]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    9. [9]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    10. [10]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    11. [11]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    12. [12]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    13. [13]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    15. [15]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    16. [16]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    17. [17]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    18. [18]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    19. [19]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    20. [20]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

Metrics
  • PDF Downloads(1160)
  • Abstract views(4410)
  • HTML views(117)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return