Citation: SUN Feng-Juan, WANG Jia. Development and Application of Virtual Potentiostat on Electrochemical Corrosion Measurement[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 615-622. doi: 10.3866/PKU.WHXB201201101 shu

Development and Application of Virtual Potentiostat on Electrochemical Corrosion Measurement

  • Received Date: 19 October 2011
    Available Online: 10 January 2012

    Fund Project: 国家自然科学基金(50971118, 51131005)资助项目 (50971118, 51131005)

  • A potentiostat is a fundamental piece of equipment for the study of corrosion electrochemistry and research into the application of virtual technology to potentiostats is becoming increasingly important. The functions of virtual potentiostats can be controlled and implemented using software instead of complex hardware. They would be capable of not only meeting the demands of a variety of electrochemical tests, but would also be more flexible offering a simpler structure and operating parameters. This would represent a significant development in virtual electrochemical corrosion instrumentation. In this paper, a virtual potentiostat measurement system VEC11-A (virtual electrochemical corrosion test system) has been designed based on LabVIEW. The virtual instrument system of the potentiostat, based on the proportionintegration- differentiation (PID) control technology operated under the LabVIEW 2010 programming platform, was used to determine corrosion potential measurement, polarization curves, linear polarization curves, cyclic voltammetry curves, dynamic potential anode passivation curves, and constant potential step curves. In contrast with normal electrochemical instruments, the system worked well for electrolyzers of different impedances.
  • 加载中
    1. [1]

      (1) Yang, L. P.; Li, H. T.; Xiao, K.; Yang, L. An Introduction to the Virtual Instrument Technology; Publishing House of Electronics industry: Beijing, 2003; pp 2-6. [杨乐平, 李海涛, 肖凯, 杨磊. 虚拟仪器技术概论, 北京: 电子工业出版社, 2003: 2-6.]

    2. [2]

      (2) Li, Q. X.; Ren, Y. X. Modern Scientific Instruments 1999, 4, 10. [李青霞, 任焱晞. 现代科学仪器, 1999, 4, 10.]

    3. [3]

      (3) Hu, G.; Zhang, S. T. Computers and Applied Chemistry 2006, 23 (5), 465. [胡舸, 张胜涛. 计算机与应用化学, 2006, 23 (5), 465.]

    4. [4]

      (4) Pan, G. Y.;Wang, J. Journal of Chinese Society for Corrosion and Protection 2008, 28 (4), 210. [潘国运, 王佳. 中国腐蚀与防护学报, 2008, 28 (4), 210.]

    5. [5]

      (5) Li, H. Q.; Luo, X. B.; Liu, C. X.; Jiang, L. Y.; Cui, D. F.; Cai, X. X. Multi-Channel Electrochemical Detection System Base on LabVIEW. In Information Acquisition, 2004 International Conference on Information Acquisition, Hefei,China, June 21-25, 2004; Yang, Q. D. Ed.; Press of University of Science and Technology of China: Hefei, 2005; pp 224-227.

    6. [6]

      (6) Perusse, P.; Leech, D. Instrumentation Science & Technology 2000, 28 (1), 59.

    7. [7]

      (7) Economou, A.; Bolis, S. D.; Efstathoou, C. E.; Volikakis, G. J. Analytica Chimica Acta 2004, 467, 179.

    8. [8]

      (8) Han, L.; Mai,W.;Wang, S. Y.; Song, S. Z. Corrosion Science and Protection Technology 2004, 16 (1), 50. [韩磊, 买巍, 王守琰, 宋诗哲. 腐蚀科学与防护技术, 2004, 16 (1), 50.]

    9. [9]

      (9) Han, L.; Song, S. Z. Journal of Chemical Industry and Engineering 2008, 59 (4), 977. [韩磊, 宋诗哲. 化工学报, 2008, 59 (4), 977.]

    10. [10]

      (10) Zhong, H. J.; Deng, S. H. Analytical Instrumentation 2009, 2, 1. [钟海军, 邓少华. 分析仪器, 2009, 2, 1.]

    11. [11]

      (11) Song, S. Z. Corrosion Electrochemical Research Methods; Chemical Industry Press: Beijing, 1988; pp 28-29. [宋诗哲. 腐蚀电化学研究方法. 北京: 化学工业出版社, 1988: 28-29.]

    12. [12]

      (12) Jin, Q.; Deng, Z. J. Journal of Chongqing Institute of Technology 2008, 22 (5), 91. [金奇, 邓志杰. 重庆工学院学报, 2008, 22 (5), 91.]

    13. [13]

      (13) Jin, Z. Q.; Bao, Q. L. Microcomputer Information 2005, 21 (6), 1. [金志强, 包启亮. 微计算机信息, 2005, 21 (6), 1.]

    14. [14]

      (14) Jiang,W.; Yuan, F. Journal of East China Institute of Technology 2004, 12 (4), 395. [江伟, 袁芳. 东华理工学院学报, 2004, 12 (4), 395.]

    15. [15]

      (15) Wang,W.; Zhang, J. T. Acta Automatica Sinica 2000, 26 (3), 348. [王伟, 张晶涛. 自动化学报, 2000, 26 (3), 348.]

    16. [16]

      (16) Ruan, Q. Z. LabVIEW and Me —The Ten-year-programming Experience of a Engineer in NI; Beihang University Press: Beijing, 2009; pp 197-246. [阮奇桢. 我和LabVIEW—— 一个NI工程师的十年编程经验. 北京: 北京航空航天大学出版社, 2009: 197-246.]

    17. [17]

      (17) Zhang, K.; Zhou, Z.; Guo, D. LabVIEW Virtual Instrument Engineering Design and Development; National Defence Industry Press: Beijing, 2004; pp 2-6. [张凯, 周陬, 郭栋. LabVIEW虚拟仪器工程设计与开发. 北京: 国防工业出版社, 2004: 2-6.]

    18. [18]

      (18) Ye, X. S.; Zhang, G. D.; Gao, B.;Wang, P. Chinese Journal of Scientific Instrument 2005, 26 (10), 1002. [叶学松, 张贵东, 高波, 王平. 仪器仪表学报, 2005, 26 (10), 1002.]

    19. [19]

      (19) Dai, F. P.; Lv, S. Y.; Feng, B. X.; Li, Q. Journal of Lanzhou University 2002, 38 (6), 44. [代富平, 吕淑媛, 冯博学, 李强. 兰州大学学报, 2002, 38 (6), 44.]

    20. [20]

      (20) Fan, Z. X.; He,W.; Huo, C. H. Modern Scientific Instruments 2005, (3), 33. [范中晓, 何为, 霍彩虹. 现代科学仪器, 2005, (3), 33.]

    21. [21]

      (21) Liu, Y. H. Electrochemical Measurement Technology; Beijing Aviation Institute Press: Beijing, 1987; pp 17-98. [刘永辉. 电化学测试技术. 北京: 北京航空学院出版社, 1987: 17-98.]

    22. [22]

      (22) Wei, B. M. Metal Corrosion Theory and Application; Chemical Industry Press: Beijing, 1984; pp 170-221. [魏宝明. 金属腐蚀理论及应用. 北京: 化学工业出版社, 1984: 170-221.]

    23. [23]

      (23) Zou, Y.;Wang, J. Acta Phys. -Chim. Sin. 2010, 26, 2361. [邹妍, 王佳. 物理化学学报, 2010, 26, 2361.]

    24. [24]

      (24) Fan, X. Z.; Lu, Y. H.; Kong, X. F.; Xu, H. B.;Wang, J. Acta Phys. -Chim. Sin. 2011, 27, 887. [范新庄, 芦永红, 孔祥峰, 徐海波, 王佳. 物理化学学报, 2011, 27, 887.]

    25. [25]

      (25) Wang, X. Y.;Wu, Y. X.; Zhang, L.; Yu, Z. Y. Corrosion Science and Protection Technology 2000, 12 (6), 311. [汪轩义, 吴荫顺, 张琳, 于正阳. 腐蚀科学与防护技术, 2000, 12 (6), 311.]

  • 加载中
    1. [1]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    2. [2]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    3. [3]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    4. [4]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    5. [5]

      Dongxue Han Huiliang Sun Li Niu . Virtual Reality Technology for Safe and Green University Chemistry Experimental Education. University Chemistry, 2024, 39(8): 191-196. doi: 10.3866/PKU.DXHX202312055

    6. [6]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    7. [7]

      Hui Liu Shupeng Zhang Yuntian Zhang Wei Dong Yuji Liu Bingxin Deng Dongping Chen Yongxing Tang . Research on the Application of Virtual Reality (VR) Technology in the Teaching of Organic Chemistry. University Chemistry, 2024, 39(8): 64-71. doi: 10.3866/PKU.DXHX202312028

    8. [8]

      Xiaofei Zhou Yu-Qing Cao Feng Zhu Li Qi Linhai Liu Ni Yan Zhiqiang Zhu . Missions and Challenges of Instrumental Analysis Course in the New Era. University Chemistry, 2024, 39(6): 174-180. doi: 10.3866/PKU.DXHX202310058

    9. [9]

      Zhonghua Xi Xuanfeng Kong Jinyue Yang Bin Liu Tingyu Zhu Hui Zhang Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123

    10. [10]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    11. [11]

      Hui Xiong Yan Wang Rongxian Bai Yongqi Wu Chengmei Liu Yuefa Gong Jian Zhang . Development of a Compound Talent Training System Based on Virtual Technology: a Case Study of Chemical Unit and Process Simulation Practices. University Chemistry, 2024, 39(10): 314-317. doi: 10.12461/PKU.DXHX202405071

    12. [12]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    13. [13]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    14. [14]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    15. [15]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Application of Comparative Pedagogy in Instrumental Analysis Experiment Teaching. University Chemistry, 2024, 39(3): 266-273. doi: 10.3866/PKU.DXHX202309068

    16. [16]

      Zhenyu Feng Zhaozhen Cao Jinhua Zhan . Exploration of Online Training System for Large-Scale Instrument in Open Laboratory of Universities. University Chemistry, 2024, 39(4): 1-6. doi: 10.3866/PKU.DXHX202311016

    17. [17]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    18. [18]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    19. [19]

      Qiang Xu Rong Zhang Liyan Zhang Jinxuan Liu Shuo Wu Rongwen Lv . Exploration and Practice of Ideological and Political Education Construction in the Course of Practical Instrument Analysis Theory. University Chemistry, 2024, 39(6): 132-136. doi: 10.3866/PKU.DXHX202311018

    20. [20]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Exploration on the Integration Mode of Instrumental Analysis with Science and Education under the Background of Artificial Intelligence Era. University Chemistry, 2024, 39(8): 365-374. doi: 10.12461/PKU.DXHX202403014

Metrics
  • PDF Downloads(1109)
  • Abstract views(1952)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return