Citation: YU Chang-Lin, CAO Fang-Fang, SHU Qing, BAO Yu-Long, XIE Zhi-Peng, YU Jimmy C, YANG Kai. Preparation, Characterization and Photocatalytic Performance of Ag/BiOX (X=Cl, Br, I) Composite Photocatalysts[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 647-653. doi: 10.3866/PKU.WHXB201201051 shu

Preparation, Characterization and Photocatalytic Performance of Ag/BiOX (X=Cl, Br, I) Composite Photocatalysts

  • Received Date: 13 September 2011
    Available Online: 5 January 2012

    Fund Project: 国家自然科学基金(21067004) (21067004) 江西省自然科学基金(2010GZH0048) (2010GZH0048) 江西省教育厅科技项目(GJJ12344) (GJJ12344)固体表面物理化学国家重点实验室(厦门大学)开放基金(200906)资助项目 (厦门大学)开放基金(200906)

  • A series of novel bismuth oxyhalide Ag/BiOX (X=Cl, Br, I) composite photocatalysts were synthesized by a solution-based photodeposited method at room temperature. The resulting products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) emission spectroscopy, UV-Vis diffuse reflectance spectroscopy (DRS), and N2 physical adsorption. The photocatalytic activity of the samples was evaluated by photocatalytic degradation of acid orange II under visible light (420 nm< λ <660 nm) irradiation. Analysis by N2 physical adsorption showed that deposition of Ag decreased the specific surface area of the catalyst. UV-Vis DRS analysis indicated that the presence of Ag could result in surface plasmon absorption, effectively increasing the visible light absorption ability of BiOCl and BiOBr. Furthermore, PL analysis indicated that Ag could effectively suppress the recombination of photogenerated electron (e-)-hole (h+) pairs of Ag/BiOX. Activity testing indicated that the deposition of an optimal amount of 1%-2% (w, mass fraction) Ag brought about 10, 13, and 2 fold increases in the photocatalytic activity of BiOCl, BiOBr, and BiOI, respectively. The high photocatalytic performance of the composite photocatalysts could be attributed to the strong visible light absorption, silver plasmon photocatalysis role and the recombination restraint of the e-/h+ pairs resulting from the presence of metal silver particles.
  • 加载中
    1. [1]

      (1) Zheng, H. L.; Cui, Y. J.; Zhang, J. S.; Ding, Z. X.;Wang, X. C. Chin. J. Catal. 2011, 32, 100. [郑华荣, 崔言娟, 张金水, 丁正新, 王心晨. 催化学报, 2011, 32, 100.]

    2. [2]

      (2) Xu, P. C.; Liu, Y.;Wei, J. H.; Xiong, R.; Pan, C. X.; Shi, J. Acta Phys. -Chim. Sin. 2010, 26, 2261. [许平昌, 柳阳, 魏建红, 熊锐, 潘春旭, 石兢. 物理化学学报, 2010, 26, 2261.]

    3. [3]

      (3) Cai, C. L.;Wang, J. G.; Cao, F. L.; Li, H. X.; Zhu, J. Chin. J. Catal. 2011, 32, 862. [蔡陈灵, 王金果, 曹锋雷, 李和兴, 朱建. 催化学报, 2011, 32, 862.]  

    4. [4]

      (4) Cui, H. N.; Zhao, Z. H.; Liang, Y. R.; Shi, J. Y.;Wu, D. C.; Liu, H.; Fu, R.W. Chin. J. Catal. 2011, 32, 321. [崔华楠, 赵振华, 梁业如, 石建英, 吴丁财, 刘鸿, 符若文. 催化学报, 2011, 32, 321.]

    5. [5]

      (5) Cong, Y.; Qin, Y.; Li, X. K.; Dong, Z. J.; Yuan, G. M.; Cui, Z. W. Acta Phys. -Chim. Sin. 2011, 27, 1509. [丛野, 秦云, 李轩科, 董志军, 袁观明, 崔正威. 物理化学学报, 2011, 27, 1509.]

    6. [6]

      (6) Yu, C. L.; Yang, K.; Yu, J. M.; Peng, P.; Cao, F. F.; Li, X.; Zhou, X. C. Acta Phys. -Chim. Sin. 2011, 27, 505. [余长林, 杨凯, 余济美, 彭鹏, 操芳芳, 李鑫, 周晓春. 物理化学学报, 2011, 27, 505.]

    7. [7]

      (7) Zhang, K. L.; Liu, C. M.; Huang, F. Q.; Zheng, C.;Wang,W. D. Appl. Catal. B 2006, 68, 125.  

    8. [8]

      (8) Zhang, X.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z. J. Phys. Chem. C 2008, 112, 747.  

    9. [9]

      (9) Wang,W. D.; Huang, F. Q.; Lin, X. P.; Yang, J. H. Catal. Commun. 2008, 9, 8.  

    10. [10]

      (10) Yu, C. L.; Yu, J. C. Mater. Sci. Eng. B 2010, 166, 213.  

    11. [11]

      (11) Yu, C. L.; Fan, C. F.; Meng, X. J.; Yang, K.; Cao, F. F.; Li, X. Reac. Kinet. Mech. Cat. 2011, 103, 141.  

    12. [12]

      (12) Yu, C. L.; Fan, C. F.; Yu, J. C.; Zhou,W. Q.; Yang, K. Mater. Res. Bull. 2011, 46, 140.  

    13. [13]

      (13) Lin, X. P.; Huang, F. Q.;Wang,W. D.; Shi, J. L. J. Phys. Chem. B 2006, 110, 24629.  

    14. [14]

      (14) Sun, B.; Vorontsov, V.; Smirniotis, P. G. Langmuir 2003, 19, 3151.  

    15. [15]

      (15) Einaga, H.; Futamura, S.; Ibusuki, T. Environ. Sci. Technol. 2001, 35, 1880.  

    16. [16]

      (16) Yu, C. L.; Yu, J. C. Catal. Lett. 2009, 129, 462.  

    17. [17]

      (17) Matsubara, K.; Tatsuma, T. Adv. Mater. 2007, 19, 2802.  

    18. [18]

      (18) Kormann, C.; Bahnemann, D.W.; Hoffmann, M. R. J. Phys. Chem. 1988, 92, 5196.  

    19. [19]

      (19) Xiang, Q. J.; Yu, J. G.; Cheng, B.; Ong, H. C. Chem. Asian J. 2010, 5, 1466.

    20. [20]

      (20) Yu, J. G.; Dai, G. P.; Huang, B. B. J. Phys. Chem. C 2009, 113, 16394.  

    21. [21]

      (21) Park, M. S.; Kang, M. Mater. Lett. 2008, 62, 183.

    22. [22]

      (22) Herrmann, J. M.; Ahiri, H.; Ait-Ichou, Y. Appl. Catal. B 1997, 13, 219.  

    23. [23]

      (23) Yu, C. L.; Yu, J. C.; Chan, M. J. Solid State Chem. 2009, 182, 1061.  

    24. [24]

      (24) Jiang, Z.; Yang, F.; Yang, G. D. J. Photochem. Photobio. A 2010, 212, 8.  

    25. [25]

      (25) Chang, X. F.; Huang, J.; Tan, Q.Y.;Wang, M. Catal. Commun. 2009, 10, 1957.  

    26. [26]

      (26) Yang, S. Y.; Chen, Y. Y.; Zheng, J. G.; Cui, Y. J. J. Environ. Sci. 2007, 19, 8689.

    27. [27]

      (27) Minero, C.; Mariella, G.; Maurino, V.; Vione, D.; Pelizzetti, E. Langmuir 2000, 16, 8964.  

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    3. [3]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    4. [4]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    5. [5]

      Xiaofei ZhangShanhao XuZhiyuan WangLong HeTiangcheng HuangYongming XuYucui BianYike LiHaijun ChenZhongjun Li . Surface doping of graphene into BiOCl for efficient photocatalytic amine coupling under visible light. Acta Physico-Chimica Sinica, 2026, 42(5): 100202-0. doi: 10.1016/j.actphy.2025.100202

    6. [6]

      Zehui JIABin WENShuting ZHANGZhengliang ZHAOHongfei HANChuntao WANGCaimei FAN . Mechanism of carbon quantum dots-modified BiOCl/diatomite composites for ciprofloxacin degradation under visible light irradiation. Chinese Journal of Inorganic Chemistry, 2026, 42(2): 317-330. doi: 10.11862/CJIC.20250199

    7. [7]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    8. [8]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-0. doi: 10.3866/PKU.WHXB202402016

    9. [9]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    10. [10]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    11. [11]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    12. [12]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    13. [13]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    14. [14]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    15. [15]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    16. [16]

      Ziyi XiaoXinyi MaLinping WangHaobin HuEnzhou Liu . Efficient photocatalytic conversion H2S over NiS2/twinned-Mn0.5Cd0.5S Schottky/S-scheme homojunction in Na2S/Na2SO3 solution. Acta Physico-Chimica Sinica, 2026, 42(4): 100171-0. doi: 10.1016/j.actphy.2025.100171

    17. [17]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    18. [18]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    19. [19]

      Junjie TANGYunting ZHANGZhengjiang LIUJiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420

    20. [20]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

Metrics
  • PDF Downloads(1386)
  • Abstract views(3423)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return