Citation: YANG Xiao-Hong, LIU Chang, LIU Jin-Ku, ZHU Zi-Chun. Facile Synthesis of Assembly HAP Nanoribbon Spheres and the Synergized Action of Its Photocatalytic Properties[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2939-2945. doi: 10.3866/PKU.WHXB20112939 shu

Facile Synthesis of Assembly HAP Nanoribbon Spheres and the Synergized Action of Its Photocatalytic Properties

  • Received Date: 24 June 2011
    Available Online: 30 September 2011

    Fund Project: 国家自然科学基金(21071024) (21071024)安徽省教育厅重点科研项目(KJ2010A244) (KJ2010A244)污染控制与资源化研究国家重点实验室开放课题(PCRRF09005)资助 (PCRRF09005)

  • Hydroxyapatite (HAP) nanoribbon spheres with well-defined nanoscale structures and regular morphology were successfully synthesized using a bioactive cooperate template. The spheres are about 5-6 μm in diameter and they form from nanoribbons of 2.5 to 3 μm in length. The morphologies, structures, and surface areas of the products were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and Brunauer-Emmett-Teller (BET) analysis. In addition, the products were used as carried materials for the synthesis of the HAP/ZnO composite catalyst. The degradation rate of rhodamine B (RhB) increased by 125% and the recovery increased by 23.1% when using the composite as a catalyst compared with the ZnO nanoparticles. Possible mechanisms for the formation of the HAP assembly microspheres and their synergistic action are also discussed.
  • 加载中
    1. [1]

      (1) Liu, J. K.;Wu, Q. S.; Ding, Y. P. Eur. J. Inorg. Chem. 2005, 20, 4145.

    2. [2]

      (2) Zhang, D.L.; Yang, C.F.; Sun, Y.P.; Fu, H.Y.; Li, R.X.; Chen, H.; Li, X. J. Acta Phys. -Chim. Sin. 2010, 26, 2711. [张定林, 杨朝芬, 孙亚萍, 付海燕, 李瑞祥, 陈华, 李贤均. 物理化学学报, 2010, 26, 2711.]

    3. [3]

      (3) Liu, J. K.; Yang, X. H.; Tian, X. G. Powd. Technol. 2008, 184, 21.

    4. [4]

      (4) Liu, J. K.; Cao, T.J.; Lu, Y.; Luo, C. X. Mater. Technol. 2009, 24, 88.

    5. [5]

      (5) Ye, F.; Guo, H. F.; Zhang, H. J. Acta Biomater. 2010, 6, 2212.

    6. [6]

      (6) Zhang, M.; Liu, J. K.; Miao, R.; Li, G. M.; Du, Y. J. Nanoscale Res. Le tt. 2010, 5, 675.

    7. [7]

      (7) Hu, X. J.; Liu, J. K.; Qin, X. Y.; Huang, J.; Yi, Y. Nano 2009, 4, 165.

    8. [8]

      (8) Hu, X. J.; Liu, J. K.; Lu, Y.; Mu, J. Mater. Lett. 2008, 62, 3824.  

    9. [9]

      (9) Guo, Y. P.; Zhu, Y.; Jia, D. C. Mater. Sci. Eng. C 2010, 30, 472.

    10. [10]

      (10) Cai, Y. R.; Pan, H. H.; Xu, X. R.; Hu,Q. H.; Li, L.; Tang, R. K. Chem. Mater. 2007, 19, 3081.

    11. [11]

      (11) Liu, Y.; Zhao, X.; Pan, Y.; Zhao, J.Z.;Wang, Z. C. Acta Phys. -Chim. Sin. 2009, 25, 1467. [刘莹, 赵旭, 潘琰, 赵敬哲, 王子忱. 物理化学学报, 2009, 25, 1467.]

    12. [12]

      (12) Liu, J. K.; Luo, C. X.; Quan, N. J. J. Nanopart. Res. 2008, 10, 531.

    13. [13]

      (13) Zhao, K. F.; Qiao, B. T.;Wang, J. H.; Zhang, Y. J.; Zhang, T. Chem. Commun. 2011, No.47, 1779.

    14. [14]

      (14) Sun, Y. P.; Fu, H. Y.; Zhang, D. L.; Li, R. X.; Chen, H.; Li, X. J. Cat. Commun. 2010, No.12, 188.

    15. [15]

      (15) Zhang, Y. J.;Wang, J. H.; Yin, J.; Zhao, K. F.; Jin, C. Z.; Huang, Y. Y.; Jiang, Z.; Zhang, T. J. Phys. Chem. C 2010, 114, 16443.

    16. [16]

      (16) Mitsionisa, A.; Vaimakisa, T.; Trapalisb, C.; Todorovab, N.; Bahnemannc, D.; Dillertc, R. Appl. Catal. B-Environ. 2011, 106, 398.

    17. [17]

      (17) Liu, Y. C.; Zhong, H.; Li, L. F.; Zhang, C. J.; Mater. Res. Bull. 2010, 45, 2036.

    18. [18]

      (18) Reddy, M. P.; Venu pal, A.; Subrahmanyam, M. Appl. Catal. B- Environ. 2007, 69, 164.

    19. [19]

      (19) Ma, N.; Zhang, Y. B.; Quan, X.; Fan, X. F.; Zhao, H. M. Water Res. 2010, 44, 6104.

    20. [20]

      (20) Nishikawa, H.; Omamiuda, K. J. Mol. Catal. A-Chem. 2002, 179, 193.

    21. [21]

      (21) Shao, F.W.; Cai, Y. R.; Yao, J. M. Chem. J. Chin. Univ. 2010, 31, 1093. [邵锋伟, 蔡玉荣, 姚菊明. 高等学校化学学报, 2010, 31, 1093.]

    22. [22]

      (22) Zhang, Y. J.; Lu, J. J. Nanotechnol. 2008, 19, 155608.

    23. [23]

      (23) Cai, Y. R.; Jin, J.; Mei, D. P.; Xia, N. X.; Yao, J. M. J. Mater. Chem. 2009, 19, 5751.

    24. [24]

      (24) Aidin, L.; Mahyar, M.; Matin, M.; Amir, K.; Saeid, Z.; Hamed, A.; Sadrnezhaad, S. K. J. Am. Ceram. Soc. 2008, 91, 3292.

    25. [25]

      (25) Liu, J. B.; Li, K.W.;Wang, H.; Zhu, M. K.; Xu, H. Y.; Yan, H. Nanotechnol. 2005, 16, 82.

    26. [26]

      (26) Pan, H. H.; Tao, J. H.; Yu, X.W.; Fu, L.; Zhang, J. L.; Zeng, X. X.; Xu, G.; Tang, R. K. J. Phys. Chem. B 2008, 112, 7162

    27. [27]

      (27) Wei, G.; Reichert, J.; Bossert, J.; Jandt, K. D. Biomacromolecules 2008, 9, 3258.

    28. [28]

      (28) Li, L. Y.; Song,W. H.; Chen, T. H. Acta Phys. -Chim. Sin. 2009,  25, 2404. [李丽颖, 宋文华, 陈铁红. 物理化学学报, 2009, 25, 2404.]

    29. [29]

      (29) Liu, J. K.; Xu, Z. Z.;Wu, Q. S. Nano 2007, 2, 97.

    30. [30]

      (30) Liu, J. K.;Wu, Q. S.; Ding, Y. P. Cryst. Growth Des. 2005, 5, 445.

    31. [31]

      (31) Huang, Z. L.; Zhang, L. M.; Liu, Y.; He, Q. J.; Chen,W. J. Synthetic Cryst. 2006, 35, 261. [黄志良, 张联盟, 刘羽, 何前军, 陈伟. 人工晶体学报, 2006, 35, 261.]

    32. [32]

      (32) Yang, X. H.; Luo, C. X.; Liu, J. K.;Wang, J. D.; Chen, L. Acta Phys. -Chim. Sin. 2009, 25, 173. [杨小红, 罗重霄, 刘金库, 王建栋, 陈磊. 物理化学学报, 2009, 25, 173.]

    33. [33]

      (33) Luo, C. X.;Wang, Y.; Liu, J. K.; Lian, J. S.; Chai, C. F. Acta Phys.-Chim. Sin. 2008, 24, 1007. [罗重霄, 王燕, 刘金库, 连加松, 柴春芳. 物理化学学报, 2008, 24, 1007.]

    34. [34]

      (34) Zhang, L.; Chen, D. R.; Jiao X. L. J. Phys. Chem. B 2006, 110, 2668.

    35. [35]

      (35) Hu, M. C.; Zhong, S. H. Chin. J. Catal. 2006, 27, 1144. [胡茂从, 钟顺和, 催化学报, 2006, 27,1144.]

    36. [36]

      (36) Yolanda, P.; Mariano, F.; Avelino, C. Catal. Commun. 2011, 12: 1071.

    37. [37]

      (37) Huang, J.;Wang, L.C.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K. N. App. Catal. B-Environ. 2011, 101, 560.

    38. [38]

      (38) Hu, A. M.; Lei, T.; Li, M.; Chang, C. K.; Ling, H. Q.; Mao, D. L. Appl. Catal. B-Environ. 2006, 63, 41.

    39. [39]

      (39) Mineharu, T.; Masato,W.; Naoya, Y.; Toshiya,W. J. Mol. Catal. A- Chem. 2011, 338, 18.

    40. [40]

      (40) Zhang, L.W.; Cheng, H. Y.; Zong, R. L.; Zhu, Y. F. J. Phys. Chem. C 2009, 113, 2368.

  • 加载中
    1. [1]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    5. [5]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    6. [6]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    7. [7]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    12. [12]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    15. [15]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    16. [16]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    18. [18]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    19. [19]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    20. [20]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

Metrics
  • PDF Downloads(841)
  • Abstract views(3190)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return