Citation: ZHOU Ai-Jun, CUI Heng-Guan, LI Jing-Ze, ZHAO Xin-Bing. Structure and Morphology of Induction-Melted Higher Manganese Silicide[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2915-2919. doi: 10.3866/PKU.WHXB20112915 shu

Structure and Morphology of Induction-Melted Higher Manganese Silicide

  • Received Date: 1 July 2011
    Available Online: 23 September 2011

    Fund Project: 国家自然科学基金(51102039) (51102039) 中央高校基本科研业务费(ZYGX2010J033) (ZYGX2010J033)中国博士后科学基金(20100481375, 201104640)资助项目 (20100481375, 201104640)

  • Field emission scanning microscopy (FESEM) and energy-dispersive X-ray spectroscopy (EDXS) were used to study the morphology and composition of secondary phase precipitations in induction-melted higher manganese silicide (HMS). Striations of the secondary phase were observed in individual HMS crystals with an average interval of 5-30 μm and a thickness of ~30 nm. The chemical composition of the striations was examined and found to be MnSi, which was observed as an amorphous phase by high resolution transmission electron microscopy (HRTEM). The crystal structure of HMS was determined by selective area electron diffraction (SAED) and the results indicated a single Mn4Si7 phase in the as-prepared material and no other incommensurate HMS phases were found. After ball milling and hot pressing many defects and stress fields were observed in the HMS by transmission electron microscope (TEM), which differentiated substantially from the morphology of the as-melted HMS.
  • 加载中
    1. [1]

      (1) Luo,W.H.; Li, H.; Yan, Y.G.; Lin, Z.B.; Tang, X.F.; Zhang, Q.J.; Uher, C. Intermetallics 2011, 19, 404.  

    2. [2]

      (2) Zhou, A. J.; Zhu, T. J.; Zhao, X. B.; Yang, S. H.; Dasgupta, T.; Stiewe, C.; Hassdorf, R.; Mueller, E. J. Electron. Mater. 2010, 39, 2002.  

    3. [3]

      (3) Kaga, H.; Kinemuchi, Y.;Watari, K.; Tanaka, S.; Makiya, A.; Kato, Z.; Uematsu, K. J. Mater. Res. 2007, 22, 2917.  

    4. [4]

      (4) Fedorov, M. I.; Zaitsev, V. K. Thermoelectric Porperties of Transition Metal Silicides. In Thermoelectrics Handbook; Rowe, D. M. Ed.; CRC Press: New York, 2005; p 31.

    5. [5]

      (5) Zaitsev, V. K.; Ordin, S. V.; Rakhimov, K. A.; Engalychev, A. E. Sov. Phys. Solid State 1981, 23, 353.

    6. [6]

      (6) Nowotny, H. Crystal Chemistry of Transition Element Defect Silicides and Related Compounds. In The Chemistry of Extended Defects in Non-Metallic Solids; Eyring, L. R.; O'Keefe, M. Eds.; North-Holland: Amsterdam, 1970; pp 223-237.

    7. [7]

      (7) Kapinski, O. G.; Evseev, B. A. Izvestiya AN SSSR (Neorganicheskie Materialy) 1969, 5, 525.

    8. [8]

      (8) Schwomma, O.; Presinger, A.; Nowotny, H.;Wittman, A. Monatsh. Chem. 1964, 95, 1527.  

    9. [9]

      (9) Knott, H.W.; Mueller, M. H.; Heaton, L. Acta Cryst. 1967, 23, 549.  

    10. [10]

      (10) Zwilling, G.; Nowotny, H. Monatsh.Chem. 1971, 102, 672.  

    11. [11]

      (11) Kawasumi, I.; Sakata, M.; Nishida, I.; Masumoto, K. J. Cryst. Growth 1980, 49, 651.  

    12. [12]

      (12) Kojima, T.; Nishida, I.; Sakata, M. J. Cryst. Growth 1979, 47, 589.  

    13. [13]

      (13) Kawasumi, I.; Sakata, M.; Nishida, I.; Masumoto, K. J. Mater. Sci. 1981, 16, 355.  

    14. [14]

      (14) Nishida, I.; Masumoto, K.; Kawasumi, I.; Sakata, M. J. Less-Common Metals 1980, 71, 293.  

    15. [15]

      (15) Aoyama, I.; Fedorov, M. I.; Zaitsev, V.K.; Solomkin, F. Y.; Eremin, I. S.; Samunin, A. Y.; Mukoujima, M.; Sano, S.; Tsuji, T. Jpn. J. Appl. Phys. 2005, 44, 8562.  

    16. [16]

      (16) De Ridder, R.; Van Tendeloo, G.; Amelinckx, S. Phys. Status Solidi. -A 1976, 30, K99.

  • 加载中
    1. [1]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    2. [2]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    3. [3]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    4. [4]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    5. [5]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    6. [6]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    7. [7]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    8. [8]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    9. [9]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    12. [12]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    13. [13]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    14. [14]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    15. [15]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    16. [16]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    17. [17]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    18. [18]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    19. [19]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    20. [20]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

Metrics
  • PDF Downloads(840)
  • Abstract views(3023)
  • HTML views(157)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return