Citation: SHI Cheng-Wu, CHEN Zhu, SHI Gao-Yang, SUN Ren-Jie. Preparation of Large Grain and Dense CdS Thin Films Using Ultrasonic Agitation Chemical Bath Deposition[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2821-2825. doi: 10.3866/PKU.WHXB20112821 shu

Preparation of Large Grain and Dense CdS Thin Films Using Ultrasonic Agitation Chemical Bath Deposition

  • Received Date: 14 July 2011
    Available Online: 29 September 2011

    Fund Project: 国家自然科学基金(51072043) (51072043) 973 计划重大科学问题导向项目(2011CBA00700) (2011CBA00700) 安徽省年度重点科研计划项目(2010AKND0794) (2010AKND0794) 安徽省高校自然科学基金(KJ2010A266) (KJ2010A266)合肥工业大学学生创新基金(cxsy102084)资助项目 (cxsy102084)

  • We deposited CdS thin films onto F-doped SnO2 transparent conductive glass by ultrasonic agitation chemical bath deposition (UCBD). The influence of the annealing and CdCl2-treatment on the surface morphology, crystal structure, and direct band gap of the UCBD-CdS thin films was investigated. The effect of deposition time on the grain size of the CdS aggregates and the stack denseness of the UCBD-CdS thin films was compared. The results reveal that the small grains in the CdS aggregates were melted together and the CdS aggregate size did not change in the UCBD-CdS thin films after the CdCl2-treatment procedure. It is interesting that the ratio of the horizontal to vertical deposition rate varied with deposition time over the deposition period of the UCBD-CdS thin films. The deposition time was very important to obtain large CdS aggregate grains and dense UCBD-CdS thin films. Over a deposition time of 40 min the resulting UCBD-CdS thin films were dense and had a 180 nm grain size of CdS aggregates and a 80.8 nm of thin film thickness. The large-grained and dense UCBD-CdS thin films were suitable for thin film solar cells as a window layer.
  • 加载中
    1. [1]

      (1) Mendoza-Pérez, R.; Aguilar-Hernández, J.; Sastre-Hernández, J.; Ximello-Quiebras, N.; Contreras-Puente, G.; Santana- Rodríguez, G.; Vigil-Galán, O.; Moreno-García, E.; Morales- Acevedo, A. Sol. Energy 2006, 80, 682.  

    2. [2]

      (2) Morales-Acevedo, A. Sol. Energy 2006, 80, 675.  

    3. [3]

      (3) Bhattacharya, R. N.; Ramanathan, K. Sol. Energy 2004, 77, 679.  

    4. [4]

      (4) Liao, C.; Han, J. F.; Jiang, T.; Xie, H. M.; Jiao, F.; Zhao, K. Acta Phys. -Chim. Sin. 2011, 27, 432. [廖成, 韩俊峰, 江涛, 谢华木, 焦飞, 赵夔. 物理化学学报2011, 27, 432.]

    5. [5]

      (5) Katagiri, H.; Jimbo, K.; Yamada, S.; Kamimura, T.; Maw,W. S.; Fukano, T.; Ito, T.; Motohiro, T. Appl. Phys. Express 2008, 1, 041201.  

    6. [6]

      (6) Mahesha, M. G.; Bangera, K. V.; Shivakumar, G. K. Mat. Sci. Semicon. Proc. 2009, 12, 89.  

    7. [7]

      (7) Hernández-Contreras, H.; Mej?á-Gar??a, C.; Contreras-Puente, G. Thin Solid Films 2004, 451-452, 203.

    8. [8]

      (8) Raji, P.; Sanjeeviraja, C.; Ramachandran, K. Bull. Mater. Sci. 2005, 28, 233.  

    9. [9]

      (9) Aguilera, A.; Jayaraman, V.; Sanagapalli, S.; Singh, R. S.; Jayaraman, V.; Sampson, K.; Singh, V. P. Sol. Energy Mater. Sol. Cells 2006, 90, 713.  

    10. [10]

      (10) Sebastian, P. J.; Calixto, M. E. Thin Solid Films 2000, 360, 128.  

    11. [11]

      (11) Abou-Ras, D.; Kostorz, G.; Romeo, A.; Rudmann, D.; Tiwari, A. N. Thin Solid Films 2005, 480-481, 118.

    12. [12]

      (12) Oliva, A. I.; Castro-Rodríguez, R.; Solís-Canto, O.; Sosa, V.; Quintana, P.; Pe?a, J. L. Appl. Surf. Sci. 2003, 205, 56.  

    13. [13]

      (13) Moutinho, H. R.; Albin, D.; Yan, Y.; Dhere, R. G.; Li, X.; Perkins, C.; Jiang, C. S.; To, B.; Al-Jassim, M. M. Thin Solid Films 2003, 436, 175.  

    14. [14]

      (14) Kim, H.; Kim, D. Sol. Energy Mater. Sol. Cells 2001, 67, 297.  

    15. [15]

      (15) Contreras, M. A.; Romero, M. J.; To, B.; Hasoon, F.; Noufi, R.; Ward S.; Ramanathan, K. Thin Solid Films 2002, 403-404, 204.

    16. [16]

      (16) Dongre, J. K.; Nogriya, V.; Ramrakhiani, M. Appl. Surf. Sci. 2009, 255, 6115.  

    17. [17]

      (17) Sasikala, G.; Thilakan, P.; Subramanian, C. Sol. Energy Mater. Sol. Cells 2000, 62, 275.  

    18. [18]

      (18) Khallaf, H.; Oladeji, I. O.; Chai, G. Y.; Chow, L. Thin Solid Films 2008, 516, 7306.  

    19. [19]

      (19) Ramaiah, K. S.; Bhatnagar, A. K.; Pilkington, R. D.; Hill, A. E.; Tomlinson, R. D. J. Mater. Sci.-Mater. El. 2000, 11, 269.  

    20. [20]

      (20) Prabahar, S.; Dhanam, M. J. Cryst. Growth 2005, 285, 41.  

    21. [21]

      (21) Moualkia, H.; Hariech, S.; Aida, M. S. Thin Solid Films 2009, 518, 1259.  

    22. [22]

      (22) Kozhevnikova, N. S.; Rempel, A. A.; Hergert, F.; Magerl, A. Thin Solid Films 2009, 517, 2586.  

    23. [23]

      (23) Feng, Z. C.;Wei, C. C.;Wee, A. T. S.; Rohatgi, A.; Lu,W. J. Thin Solid Films 2010, 518, 7199.  

    24. [24]

      (24) Choi, J. Y.; Kim, K. J.; Yoo, J. B.; Kim, D. Sol. Energy 1998, 64, 41.  

    25. [25]

      (25) Wan, L.; Bai, Z. Z.; Hou, Z. R.;Wang, D. L.; Sun, H.; Xiong, L. M. Thin Solid Films 2010, 518, 6858.  

    26. [26]

      (26) Mahanty, S.; Basak, D.; Rueda, F.; Leon, M. J. Electron. Mater. 1999, 28, 559.  

  • 加载中
    1. [1]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    2. [2]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    3. [3]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    4. [4]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    5. [5]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    6. [6]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    7. [7]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    8. [8]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    9. [9]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    10. [10]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    11. [11]

      Zhi WangLingpeng YanYelin HaoJingxia ZhengYongzhen YangXuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430

    12. [12]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    13. [13]

      Zhaohu Li Weidong Wang Yuhao Liu Mingzhe Han Lingling Wei Huan Jiao . Research on the Safety Management and Disposal of Chemical Laboratory Waste. University Chemistry, 2024, 39(10): 128-136. doi: 10.3866/PKU.DXHX202312090

    14. [14]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    15. [15]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    16. [16]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    17. [17]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    18. [18]

      Fangdong Hu Xiaolei Jiang . Research and Practice of the “Integration of Theory and Practice Drives Innovation” Teaching Mode in Inorganic Chemistry under the Background of “Four New” Construction. University Chemistry, 2024, 39(11): 1-8. doi: 10.3866/PKU.DXHX202402013

    19. [19]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    20. [20]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

Metrics
  • PDF Downloads(926)
  • Abstract views(3093)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return