Citation: SUN Shi-Cai, LIU Chang-Ling, YE Yu-Guang, JIANG Qian. Dissociation Conditions and Influencing Factors of Methane Hydrate in Chloride Salt Solution under High Pressure[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2773-2778. doi: 10.3866/PKU.WHXB20112773 shu

Dissociation Conditions and Influencing Factors of Methane Hydrate in Chloride Salt Solution under High Pressure

  • Received Date: 28 July 2011
    Available Online: 27 September 2011

    Fund Project: 国土资源部公益性行业科研专项经费(201111026-3) (201111026-3) 国家重点基础研究发展规划(973) (2009CB219503) (973) (2009CB219503)山东省自然科学基金(ZR2009FQ017)资助项目 (ZR2009FQ017)

  • A method that can be used for gas hydrate exploitation is the injection of a brine solution into hydrate reservoir, therefore, the hydrate dissociation conditions and the influencing factors in brine solution should be investigated under reservoir pressure. In this paper, methane hydrate dissociation conditions in NaCl, MgCl2, and CaCl2 solutions were investigated. The results show that the dissociation temperature depressions are (4.8, 2.4, 1.0 K (NaCl)), (5.3, 1.5 K (MgCl2)), (4.3, 1.8 K (CaCl2)) in NaCl (2.0, 1.0, 0.5 mol· L-1), MgCl2 (1.0, 0.5 mol·L-1), and CaCl2 (1.0, 0.5 mol·L-1) solutions, respectively, relative to those in pure water. The experimental values were in od agreement with the calculated values based on the van der Waals and Platteeuw thermodynamic model and the Pitzer-Mayorga equation for the water activity of electrolyte solution. In chloride salt solution the water molecule solvent effect and the salting-out effect that is caused by an electrostatic field decreases the water activity resulting in a depression of the hydrate dissociation temperature.
  • 加载中
    1. [1]

      (1) Li, X. S. Modern Chemical Industry 2008, 28 (6), 1. [李小森. 现代化工, 2008, 28 (6), 1.]

    2. [2]

      (2) Wang, H. B.; Zhang, G. X.; Liang, J.; Liu, X.W.; Liang, J. Q.; ng, Y. H.; Guo, Y. Q.; Sha, Z. B. Acta Sedimentologica Sinica 2008, 26 (12), 283. [王宏斌, 张光学, 梁劲, 刘学伟, 梁金强, 龚跃华, 郭依群, 沙志彬. 沉积学报, 2008, 26 (12), 283.]

    3. [3]

      (3) Zhu, Y. H.; Zhang, Y. Q.;Wen, H. J.; Lu, Z. Q.; Jia, Z. Y.; Li, Y. H.; Li, Q. H.; Liu, C. L.;Wang, P. Acta Geol. Sin.2009, 11 (88), 1762. [祝有海, 张永勤, 文怀军, 卢振权, 贾志耀, 李永红, 李清海, 刘昌岭, 王平. 地质学报, 2009, 11 (88), 1762.]

    4. [4]

      (4) Kerr, R. A. Science 2004, 303 (5660), 946.

    5. [5]

      (5) Sun, Z. G.; Fan, S. S.; Shi, L.; Guo, Y. K.; Guo, K. H. J. Chem. Eng. Data 2001, 46, 927.  

    6. [6]

      (6) Lei, H. Y.; Zheng, Y. H.;Wu, B. X. Chin. Sci. Bull. 2002, 47 (16), 1229. [雷怀彦, 郑艳红, 吴保祥. 科学通报, 2002, 47 (16), 1229.]

    7. [7]

      (7) Najibi, H.; Chapoy, A.; Haghighi, H.; Tohidi, B. Fluid Phase Equilib. 2009, 275, 127.

    8. [8]

      (8) Yang, M. J.; Song, Y. C.; Liu, Y.; Chen, Y. J.; Li, Q. P. Chin. J. Chem. Eng. 2010, 18 (2), 292.

    9. [9]

      (9) Sloan, E. D.; Koh, C. A. Clathrate Hydrates of Natural Gases, 3rd ed.; CRC Press: New York, 2008.

    10. [10]

      (10) Song, Y. C.; Yang, M. J.; Liu, Y.; Li, Q. P. CIESC Journal 2009, 60, 1362. [宋永臣, 杨明军, 刘瑜, 李清平. 化工学报, 2009, 60, 1362.]

    11. [11]

      (11) Lu, H. L.; Matsumoto, R. Mar. Chem. 2005, 93, 149.  

    12. [12]

      (12) Sun, S. C.; Ye, Y. G.; Liu, C. L.; Tan, Y. Z.;Meng, Q. G.; Xiang, F. K.; Ma, Y. Geoscience 2010, 24 (3), 638. [孙始财, 业渝光, 刘昌岭, 谭允祯, 孟庆国, 马燕, 相凤奎. 现代地质, 2010, 24 (3), 638.]

    13. [13]

      (13) Sun, S. C.; Ye, Y. G.; Liu, C. L.; Tan, Y. Z.; Xiang, F. K.; Ma, Y. Acta Chim. Sin. 2011, 69 (9), 1135. [孙始财, 业渝光, 刘昌岭, 谭允祯, 相凤奎, 马燕. 化学学报, 2011, 69 (9), 1135.]

    14. [14]

      (14) Liu, C. L.; Ye, Y. G.; Meng, Q. G. Acta Chim. Sin. 2010, 68 (18), 1881. [刘昌岭, 业渝光, 孟庆国. 化学学报, 2010, 68 (18), 1881.]

    15. [15]

      (15) Handa, Y. P.; Dmitri, S. J. Phys. Chem. 1992, 96, 8599.  

    16. [16]

      (16) Smith, D. H.;Wilder, J.W.; Seshadri, K. AIChE J. 2002, 48, 393.  

    17. [17]

      (17) van derWaals, J. H.; Platteeuw, J. C. Adv. Chem. Phys. 1959, 1 (2), 1.

    18. [18]

      (18) Parrish,W. R.; Prausnitz, J. M. Ind. Eng. Chem. Process Des. Dev. 1972, 11 (1), 26.

    19. [19]

      (19) Holder, G. D.; Hand, J. H. AIChE J. 1982, 28, 440.  

    20. [20]

      (20) Pitzer, K. S.; Mayorga, G. J. Phys. Chem. 1973, 77 (19), 2300.

    21. [21]

      (21) Mohammadi, A. H.; Anderson, R.; Tohidi, B. AIChE J. 2005, 51, 2825.  

    22. [22]

      (22) McLeod, H. O.; Campbell, J. M. Trans. AIME 1961, 222, 590.

    23. [23]

      (23) Jhaveri, J.; Robinson, D. B. Can. J. Chem. Eng. 1965, 43, 75.

    24. [24]

      (24) Dholabhai, P. D.; Englezoa, P.; Kalogerakis, N.; Bishnoi, P. R. Can. J. Chem. Eng. 1991, 69, 800.  

    25. [25]

      (25) Dickens, G. R.; Quinby-Hunt, M. S. Geophys. Res. Lett. 1994, 1, 2115.

    26. [26]

      (26) de Rool, J. L.; Peters, C. J.; Lichtenthaler, R. N.; Diepen, G. A. M. AIChE J. 1983, 29, 651.  

    27. [27]

      (27) Huang, Z. Q. Introduction to the Electrolyte Solution Theory, revised edition; Science Press: Beijing, 1983; p 151. [黄子卿. 电解质溶液理论导论(修订版). 北京: 科学出版社, 1983: 151.]

    28. [28]

      (28) Menton, P. D.; Prrish,W. R.; Sloan, E. D. Ind. Eng. Chem. Proc. Des. Dev. 1981, 20, 399.

    29. [29]

      (29) Englezos, P.; Bishnoi, P. R. AIChE J. 1988, 34, 1718.  

  • 加载中
    1. [1]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    2. [2]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    3. [3]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    8. [8]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    9. [9]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    10. [10]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Cheng Rong Jiang Jiang Xinyu Zheng . Constructivism and Deconstructivism in General Chemistry Teaching: Taking the Teaching of Colloidal Solutions as an Example. University Chemistry, 2024, 39(2): 292-297. doi: 10.3866/PKU.DXHX202308035

    14. [14]

      Yinuo Wu Jiantao Ye Xie Zhou Yu Qian Lei Guo . Teaching Design of Basic Chemistry Based on PBL Methodology for Medical Undergraduates: A Case Study on “Osmotic Pressure of Solution”. University Chemistry, 2024, 39(3): 149-157. doi: 10.3866/PKU.DXHX202309077

    15. [15]

      Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    18. [18]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    19. [19]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    20. [20]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

Metrics
  • PDF Downloads(732)
  • Abstract views(2868)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return