Citation: WU Man-Man, TANG Xiao-Feng, NIU Ming-Li, ZHOU Xiao-Guo, DAI Jing-Hua, LIU Shi-Lin. Ionization and Dissociation of Methyl Chloride in an Excitation Energy Range of 13-17 eV[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2749-2754. doi: 10.3866/PKU.WHXB20112749 shu

Ionization and Dissociation of Methyl Chloride in an Excitation Energy Range of 13-17 eV

  • Received Date: 21 September 2011
    Available Online: 14 October 2011

    Fund Project: 国家自然科学基金(10979042, 21073173) (10979042, 21073173)国家重点基础研究发展规划项目(973) (2007CB815204)资助 (973) (2007CB815204)

  • Using threshold photoelectron-photoion coincidence time-of-flight mass spectrometry, the photoionization and photodissociation of methyl chloride in the excitation energy range of 13-17 eV were investigated. CH3Cl+ ions in the A2A1 and B2E excited states were generated, both of which were completely dissociative. CH3+ fragments were mainly produced while CH2Cl+ fragment ions were observed as well. By fitting the time-of-flight profile the kinetic energy released distributions of CH3+ during the dissociation of the energy-selected CH3Cl+ ions were obtained. The dissociation of the CH3Cl+ (A2A1) ion followed rapid direct fragmentation while that of the B2E state showed statistical dissociation. Moreover, with the aid of the calculated potential energy surface the CH2Cl + fragment ions observed in the A2A1 state were generated from the statistical dissociation of the high vibrational excited CH3Cl+ (X2E) ions produced by the autoionization of the CH3Cl molecule.
  • 加载中
    1. [1]

      (1) Karlsson, L.; Jadrny, R.; Mattsson, L.; Chau, F. T.; Siegbahn, K. Phys. Scr. 1977, 16, 255.

    2. [2]

      (2) Olney, T. N.; Cooper, G.; Chan,W. F.; Burton, G. R.; Brion, C. E.; Tan, K. H. Chem. Phys. 1996, 205, 421.  

    3. [3]

      (3) Locht, R.; Leyh, B.; Hoxha, A.; Jochims, H.W.; Baumgärtel, H. Chem. Phys. 2001, 272, 259.  

    4. [4]

      (4) Locht, R.; Leyh, B.; Hoxha, A.; Dehareng, D.; Jochims, H.W.; Baumgärtel, H. Chem. Phys. 2001, 272, 277.  

    5. [5]

      (5) Locht, R.; Leyh, B.; Hoxha, A.; Dehareng, D.; Hottmann, K.; Jochims, H.W.; Baumgärtel, H. Chem. Phys. 2001, 272, 293.  

    6. [6]

      (6) Holland, D. M. P.; Powis, I.; Ö hrwall, G.; Karlsson, L.; Niessen,W. V. Chem. Phys. 2006, 326, 535.  

    7. [7]

      (7) Novak, I.; Benson, J. M.; Potts, A.W. J. Electron. Spectrosc. Relat. Phenom. 1986, 41, 225.  

    8. [8]

      (8) Hikosaka, Y.; Eland, J. H. D.;Watson, T. M.; Powis, I. J. Chem. Phys. 2001, 115, 4593.  

    9. [9]

      (9) Tsuda, S.; Melton, C. E.; Hamill,W. H. J. Chem. Phys. 1964, 41, 689.  

    10. [10]

      (10) Tsuda, S.; Hamill,W. H. J. Chem. Phys. 1964, 41, 2713.  

    11. [11]

      (11) Lossing, F. P. Bull. Soc. Chim. Belges. 1972, 81, 125.

    12. [12]

      (12) Werner, A. S.; Tsai, B. P.; Baer, T. J. Chem. Phys. 1974, 60, 3650.  

    13. [13]

      (13) Eland, J. H. D.; Frey, R.; Kuestler, A.; Schulte, H.; Brehm, B. Int. J. Mass Spectrom. Ion Phys. 1976, 22, 155.  

    14. [14]

      (14) Lane, I. C.; Powis, I. J. Phys. Chem. 1993, 97, 5803.  

    15. [15]

      (15) Orth, R. G.; Dunbar, R. C. J. Chem. Phys. 1978, 68, 3254.  

    16. [16]

      (16) Won, D. S.; Kim, M. S.; Choe, J. C.; Ha, T. K. J. Chem. Phys. 2001, 115, 5454.  

    17. [17]

      (17) Brunetti, B.; Candori, P.; Andres, J. D.; Pirani, F. J. Phys. Chem. A 1997, 101, 7505.  

    18. [18]

      (18) Albertí, M.; Lucas, J. M. J. Phys. Chem. A 2000, 104, 1405.  

    19. [19]

      (19) Liu, X. H.; Gross, R. L.; Suits, A. G. Science 2001, 294, 2527.  

    20. [20]

      (20) Xi, H.W.; Huang, M. B.; Chen, B. Z.; Li,W. Z. J. Phys. Chem. A 2005, 109, 4381.  

    21. [21]

      (21) Stockbauer, R. J. Chem. Phys. 1973, 58, 3800.  

    22. [22]

      (22) Jarvis, G.;Weitzel, K.; Malow, M.; Baer, T.; Song, Y.; Ng, C. Rev. Sci. Instrum. 1999, 70, 3892.  

    23. [23]

      (23) Tang, X. F.; Niu, M. L.; Zhou, X. G.; Liu, S. L.; Liu, F. Y.; Shan, X. B.; Sheng, L. S. J. Chem. Phys. 2011, 134, 054312.  

    24. [24]

      (24) Tang, X. F.; Zhou, X. G.; Niu, M. L.; Liu, S. L.; Sheng, L. S. J. Phys. Chem. A 2011, 115, 6339.  

    25. [25]

      (25) Tang, X. F.; Zhou, X. G.; Niu, M. L.; Liu, S. L.; Sun, J. D.; Shan, X. B.; Liu, F. Y.; Sheng, L. S. Rev. Sci. Instrum. 2009, 80, 113101.  

    26. [26]

      (26) Zhen, C.; Tang, X. F.; Zhou, X. G.; Liu, S. L. Acta Phys. -Chim. Sin. 2011, 27, 1574. [甄承, 唐小锋, 周晓国, 刘世林. 物理化学学报, 2011, 27, 1574.]

    27. [27]

      (27) Wang, S. S.; Kong, R. H.; Shan, X. B.; Sheng, L. S. Journal of Synchrotron Radiation 2006, 13, 415.  

    28. [28]

      (28) Franklin, J. L.; Hierl, P. M.; Whan, D. A. J. Chem. Phys. 1967, 47, 3148.  

    29. [29]

      (29) Powis, I.; Mansell, P. I.; Danby, C. J. Int. J. Mass Spectrom. Ion Phys. 1979, 32, 15.  

    30. [30]

      (30) Seccombe, D. P.; Chim, R. Y. L.; Jarvis, G. K.; Tuckett, R. P. Phys. Chem. Chem. Phys. 2000, 2, 769.

    31. [31]

      (31) Xu, H. F.; Guo, Y.; Li, Q. F.; Shi, Y.; Liu, S. L.; Ma, X. X. J. Chem. Phys. 2004, 121, 3069.  

  • 加载中
    1. [1]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    2. [2]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    3. [3]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    6. [6]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    7. [7]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    8. [8]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    9. [9]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    10. [10]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    11. [11]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    12. [12]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    13. [13]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    14. [14]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    15. [15]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

Metrics
  • PDF Downloads(845)
  • Abstract views(2591)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return