Citation: MIAO Yan-Lin, SUN Huai, WANG Lin, SUN Ying-Xin. Predicting Hydrogen Storage Performances in Porous Aromatic Frameworks Containing Carboxylate Functional Groups with Divalent Metallic Cations[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 547-554. doi: 10.3866/PKU.WHXB201112301 shu

Predicting Hydrogen Storage Performances in Porous Aromatic Frameworks Containing Carboxylate Functional Groups with Divalent Metallic Cations

  • Received Date: 14 November 2011
    Available Online: 30 December 2011

    Fund Project: 国家自然科学基金(21073119) (21073119)国家重点基础研究发展计划(973) (2007CB209701)资助 (973) (2007CB209701)

  • We report force field predictions for the hydrogen uptakes of porous aromatic framework (PAF) materials containing carboxylate functional groups with divalent metallic cations. The ab initio calculations were performed on our proposed functional groups and hydrogen molecules using the MP2 method with the TZVPP basis set and basis set superposition error (BSSE) correction. A force field was developed based on the ab initio energetic data. The resulting force field was applied to predict hydrogen adsorption isotherms at different temperatures and pressures using the grand canonical Monte Carlo (GCMC) method. Each functional group of divalent metallic cations and two carboxylic acid groups provided 13 (Mg) or 14 (Ca) binding sites for hydrogen molecules with an average binding energy of 8 kJ·mol-1 per hydrogen molecule. The predicted hydrogen adsorption results were improved remarkably by the functional groups at normal ambient conditions, exceeding the 2015 target set by the department of energy (DOE) of USA. This work reveals the complex relationship between hydrogen uptake and surface area, and the free volumes and binding energies of different materials.
  • 加载中
    1. [1]

      (1) Millward, A. R.; Yaghi, O. M. J. Am. Chem. Soc. 2007, 127, 17998.

    2. [2]

      (2) Wong-Foy, A. G.; Matzger, A. J.; Yaghi, O. M. J. Am. Chem. Soc. 2006, 128, 3494.  

    3. [3]

      (3) Kaye, S. S.; Dailly, A.; Yaghi, O. M.; Long, J. R. J. Am. Chem. Soc. 2007, 129, 14176.  

    4. [4]

      (4) Han, S. S.; Deng,W. Q.; ddard,W. A. Angew. Chem. Int. Edit. 2007, 46, 6289.  

    5. [5]

      (5) Frost, H.; Duren, T.; Snuff, R. Q. J. Phys. Chem. B 2006, 110, 9565

    6. [6]

      (6) Zeng, Y. Y.; Zhang, B. J. Acta Phys. -Chim. Sin. 2008, 24, 1493. [曾余瑶, 张秉坚. 物理化学学报, 2008, 24, 1493.]

    7. [7]

      (7) Mu, H.; Liu, D. H.; Yang, Q. Y.; Zhong, C. L. Acta Phys. -Chim. Sin. 2010, 26, 1657. [穆韡, 刘大欢, 阳庆元, 仲崇立. 物理化学学报, 2010, 26, 1657.]

    8. [8]

      (8) Farha, O. K.; Yazaydin, A.; Eryazici, I.; Malliakas, C. D.; Hauser, B. G.; Kanatzidis, M. G.; Nguyen, S. T.; Snurr, R. Q.; Hupp, J. T. Nat. Chem. 2010, 2, 944.  

    9. [9]

      (9) Ben, T.; Ren, H.; Ma, S. Q.; Cao, D. P.; Lan, J. H.; Jing, X. F.; Wang,W. C.; Xu, J.; Deng, F.; Simmons, J. M. Angew. Chem. Int. Edit. 2009, 48, 9457.  

    10. [10]

      (10) U.S. Department of Energy. Energy Efficiency and Renewable Energy. http://www1.eere.energy. v/hydrogenandfuelcells/ storage/pdfs/targets_onboard_hydro_storage.pdf.

    11. [11]

      (11) Sun, Y. X.; Ben, T.;Wang, L.; Qiu, S. L.; Sun, H. J. Phys. Chem. Lett. 2010, 1, 2753.  

    12. [12]

      (12) Yoon, M.; Yang, S.; Hicke, C.;Wang, E.; Geohegan, D.; Zhang, Z. Phys. Rev. Lett. 2008, 100, 206806.  

    13. [13]

      (13) Wang, L. F.; Yang, R. T. Ind. Eng. Chem. Res. 2010, 49, 3634.  

    14. [14]

      (14) Garbemglio, G.; Skoulidas, M.; Johnson, J. K. J. Phys. Chem. B 2005, 109, 13094.  

    15. [15]

      (15) Frost, H.; Snurr, R. Q. J. Phys. Chem. C 2007, 111, 18794.  

    16. [16]

      (16) Yang, Q.; Zhong, C. J. Phys. Chem. B 2005, 109, 11862.  

    17. [17]

      (17) Fu, J.; Sun, H. J. Phys. Chem. C 2009, 113, 21815.  

    18. [18]

      (18) Wang, L.; Sun, Y. X.; Sun, H. Faraday Discuss. 2011, 151, 143.  

    19. [19]

      (19) Heinz, H.; Suter, U.W. J. Phys. Chem. B 2004, 108, 18341.  

    20. [20]

      (20) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al . Gaussian 03, Revision C.02; Gaussian Inc.:Wallingford, CT, 2004.

    21. [21]

      (21) Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Chem. Phys. Lett. 1989, 162, 165.  

    22. [22]

      (22) Feynman, R. P.; Hibbs, A. R. McGraw-Hill: New York, 1965.

    23. [23]

      (23) Feynman, R. P. Mod. Phys. 1948, 20, 367.  

    24. [24]

      (24) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford University Press: New York, 1987.

    25. [25]

      (25) Martin, M. G. MCCCS Towhee, 2006, http://towhee.sourceforge. net/.

    26. [26]

      (26) Liu, L. C.; Fu, J.; Sun, H. Science in China Series B: Chemistry 2008, 38, 331. [刘连池, 付嘉, 孙淮. 中国科学B辑: 化学, 2008, 38, 331.]

    27. [27]

      (27) Materials Studio; Accelrys Inc.: San Die , CA.

    28. [28]

      (28) Bhatia, S. K.; Myers, A. L. Langmuir 2006, 22, 1688.  

  • 加载中
    1. [1]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    2. [2]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    3. [3]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    4. [4]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    5. [5]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    6. [6]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    7. [7]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    8. [8]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    9. [9]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    10. [10]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    11. [11]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    12. [12]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    13. [13]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    14. [14]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    15. [15]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    16. [16]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    17. [17]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    18. [18]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    19. [19]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    20. [20]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(775)
  • Abstract views(2274)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return