Citation: SUN Ya-Ping, FAN Xin-Zhuang, LU Yong-Hong, XU Hai-Bo. Electrocatalytic Performance and Pseudo-Capacitive Characteristics of Modified Graphite Electrode with Fe3+/Fe2+ in H2SO4 Solution[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 603-608. doi: 10.3866/PKU.WHXB201112272 shu

Electrocatalytic Performance and Pseudo-Capacitive Characteristics of Modified Graphite Electrode with Fe3+/Fe2+ in H2SO4 Solution

  • Received Date: 7 November 2011
    Available Online: 27 December 2011

    Fund Project: 山东省博士基金(BS2010NJ018, BS2011NJ019) (BS2010NJ018, BS2011NJ019)中央高校基础科研基金(201022006)资助项目 (201022006)

  • The electrocatalytic performance and pseudocapacitive characteristics of a modified graphite electrode (MGE) with Fe3+/Fe2+ in H2SO4 solution were studied by cyclic voltammetry (CV), constant current charge-discharge measurements, and electrochemical impedance spectroscopy (EIS). The results showed that the MGE had high electrocatalytic activity and od reversible characteristics for the redox reaction of Fe3+/Fe2+ because of a large quantity of oxygen-containing functional groups on the MGE surface. The apparent area-specific capacitance of the MGE in 2.0 mol·L-1 H2SO4 solution containing 0.5 mol·L-1 Fe3+ and 0.5 mol·L-1 Fe2+ reached 2.157 F·cm-2, which was almost double that in 2.0 mol·L-1 H2SO4 without Fe3+/ Fe2+ . Meanwhile, increasing the concentration of iron ions increased the capacitance of the MGE. The addition of Fe3+/Fe2+ made the charge-discharge curves more symmetric and change more slowly, which increases the charge-discharge time, and effectively improves the capacitive energy storage and high power performance for an electrochemical capacitor (EC). The obvious capacitive characteristics were confirmed by EIS, and are attributed to the oxygen-containing functional groups on the MGE and the Faraday redox reaction of Fe3+/Fe2+ in the thin electrolyte layer. Therefore, the oxygen-containing functional groups on the MGE surface and redox reaction of Fe3+/Fe2+ can be used together for energy storage and release.
  • 加载中
    1. [1]

      (1) Patrice, S.; Yury, G. Nature Materials 2008, 7, 845.  

    2. [2]

      (2) Tian, Z.W.; Dong, Q. F.; Zheng, M. S.; Lin, Z. G. Based on Liquid Phase Electrochemically Active Material for Super Capacitor. CN Patent 200610087625.1, 2006-11-22. [田昭武, 董全峰, 郑明森, 林祖赓. 基于液相中的电化学活性物质的超级电容器: 中国, 200610087625.1[P]. 2006-11-22.]

    3. [3]

      (3) Bae, C. H.; Roberts, E. P. L.; Dryfe, R. A.W. Electrochim. Acta 2002, 48, 279.  

    4. [4]

      (4) Moraw, F.; Fatih, K.;Wilkinson, D.; Girard, F. Adv. Mater. Res. 2007, 15-17, 315.

    5. [5]

      (5) Hagg, C. M.; Skyllas-Kazacos, M. J. Appl. Electrochem. 2002, 32, 1063.  

    6. [6]

      (6) Qian, P.; Zhang, H. M.; Chen, J.;Wen, Y. H.; Luo, Q. T.; Liu, Z. H.; You, D. J.; Yi, B. L. J. Power Sources 2008, 175, 613.  

    7. [7]

      (7) Chen, P. H.; McCreery, R. L. Anal. Chem. 1996, 68, 3958.  

    8. [8]

      (8) Banks, C. E.; Davis, T. J.;Wild ose, G. G.; Compton, R. G. Chem. Commun. 2005, 829.

    9. [9]

      (9) McCreery, R. L. Electroanalytical Chemistry; Bard, A. J. Ed.; Dekker: New York, 1991; Vol. 17, pp 221-374.

    10. [10]

      (10) Li, Q.; Li, K. X.; Sun, G. H.; Fan, H.; Gu, J. N. Acta Phys. - Chim. Sin. 2006, 22, 1445. [李强, 李开喜, 孙国华, 范慧, 谷建宁. 物理化学学报, 2006, 22, 1445.]

    11. [11]

      (11) Xu, H. B.; Fan, X. Z.; Lu, Y. H.; Zhong, L.; Kong, X. F.;Wang, J. Carbon 2010, 48, 3300.  

    12. [12]

      (12) Fan, X. Z.; Lu, Y. H.; Xu, H. B.; Kong, X. F.;Wang, J. J. Mater. Chem. 2011, 21, 18753.  

    13. [13]

      (13) Fan, X. Z.; Lu, Y. H.; Kong, X. F.; Xu, H. B.;Wang, J. Acta Phys. -Chim. Sin. 2011, 27, 887. [范新庄, 芦永红, 孔祥峰, 徐海波, 王佳. 物理化学学报, 2011, 27, 887.]

    14. [14]

      (14) Xu, H. B.; Yan, C.W.; Lu, Y. H.; Liu, J. G. A Redox Reaction Electrochemical Capacitor. CN Patent 201110028479.6, 2011. [徐海波, 严川伟, 芦永红, 刘建国. 一种氧化还原反应电化学电容器: 中国, 201110028479.6[P]. 2011.]

    15. [15]

      (15) Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Kluwer Academic/Plenum Publishers: New York, 1999; pp 200-225.

    16. [16]

      (16) Ye, J. S.; Liu, X.; Cui, H. F.; Zhang,W. D.; Sheu, F. S.; Lim, T. M. Electrochem. Commun. 2005, 7, 249.  

    17. [17]

      (17) Gu, Q. C. New Chemical Table; Jiangsu Science & Technology Publishing House: Nanjing, 1998; pp 1287-1316. [顾庆超. 新编化学用表. 南京: 江苏科技出版社, 1998: 1287-1316.]

    18. [18]

      (18) Pupkevich, V.; Glibin, V.; Karamanev, D. Electrochem. Commun. 2007, 9, 1924.  

    19. [19]

      (19) Hu, C. G.;Wang,W. L.;Wang, S. X.; Zhu,W.; Li, Y. Diamond Relat. Mater. 2003, 12, 1259.

    20. [20]

      (20) Hamann, C. H.; Hamnett, A.; Vielstich,W. Electrochemistry; Chemical Industry Press: Beijing, 2010; pp 201-207; translated by Chen, Y. X., Xia, X. H., Cai, J. Y. [卡尔·H. 哈曼, 安德鲁· 哈姆内特, 沃尔夫·菲尔施蒂希. 电化学. 陈艳霞, 夏兴华, 蔡俊译, 译. 北京: 化学工业出版社, 2010: 201-207.]

    21. [21]

      (21) Li, L. X.; Song, H. H.; Zhang, Q. C.; Yao, J. Y. Chen, X. H. J. Power Sources 2009, 187, 268.  

    22. [22]

      (22) Frackowiak, E.; Beguin, F. Carbon 2001, 39, 937.  

    23. [23]

      (23) Sipahi, M.; Parlak, E. A.; Gul, A.; Ekinci, E.; Yardim, M. F.; Sarac, A. S. Prog. Org. Coat. 2008, 62, 96.  

    24. [24]

      (24) Hu, C. C.;Wang, C. C. J. Electrochem. Soc. 2003, 150, A1079.

  • 加载中
    1. [1]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    2. [2]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    3. [3]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    4. [4]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    8. [8]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    11. [11]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    12. [12]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    13. [13]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    14. [14]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    15. [15]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    16. [16]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    17. [17]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    18. [18]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    19. [19]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    20. [20]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

Metrics
  • PDF Downloads(888)
  • Abstract views(2204)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return