Citation: GUO Yuan-Hui, MEI Qun-Bo, YAN Fang, WANG Ling-Xia, WENG Jie-Na, ZHANG Bin, HUANG Wei. Application of Iridium(III) Complexes in Phosphorescent Chemosensors[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 739-750. doi: 10.3866/PKU.WHXB201112222 shu

Application of Iridium(III) Complexes in Phosphorescent Chemosensors

  • Received Date: 10 October 2011
    Available Online: 22 December 2011

    Fund Project: 国家重点基础研究发展规划项目(973) (2009CB930601) (973) (2009CB930601) 国家自然科学基金(50803027, 50903001, 20905038) (50803027, 50903001, 20905038)江苏省高校自然科学基础研究面上项目(08KJD430020)资助 (08KJD430020)

  • Chemosensors have developed quickly because they are widely used in biology. Compared to organic fluorescent chemosensors, phosphorescent chemosensors based on heavy metal complexes have attracted great attention because of distinctive merits such as relatively long lifetimes and significant Stokes shifts. Iridium complexes had been successfully used as phosphorescent chemosensors because of their relatively short excited state lifetime, high photoluminescence efficiency, and wide range emission colors that can be tuned by the coordinated ligands. In this review, we have summarized the applications of iridium complexes in cation, anion, oxygen, amino acid, and pH sensors. Furthermore, the advantages and disadvantages of these chemosensors have been compared to others. Finally, some prospects for future study are proposed.
  • 加载中
    1. [1]

      (1) Demas, J. N.; DeGraff, B. A. Coord. Chem. Rev. 2001, 211, 317.  

    2. [2]

      (2) Cheng, Y.W.; Yang, Z.;Wei, H.;Wang, Y. Y.;Wei, L. M.; Zhang, Y. F. Acta Phys. -Chim. Sin. 2010, 26, 3127. [程应武, 杨志, 魏浩, 王艳艳, 魏良明, 张亚非. 物理化学学报, 2010, 26, 3127.]

    3. [3]

      (3) Li, M. J.; Chu, B.W. K.; Zhu, N. Y.; Yam, V.W.W. Inorg. Chem. 2007, 46, 720.  

    4. [4]

      (4) Amoroso, A. J.; Arthur, R. J.; Coogan, M. P.; Court, J. B.; Moreira, V. F.; Hayes, A. J.; Lloyd, D.; Millet, C.; Pope, S. J. A. New J. Chem. 2008, 7, 1097.

    5. [5]

      (5) Carraway, E. R.; Demas, J. N.; DeGraff, B. A.; Baeon, J. R. Anal. Chem. 1991, 63, 337.  

    6. [6]

      (6) Ge, F.; Cao, R. G.; Zhu, B.; Li, J. J.; Xu, D. S. Acta Phys. -Chim. Sin. 2010, 26, 1779. [戈芳, 曹瑞国, 朱斌, 李经建, 徐东升. 物理化学学报, 2010, 26, 1779.]

    7. [7]

      (7) Lin, Z. H.; Zhao, Y. G.; Duan, C. Y.; Zhang, B. G.; Bai, Z. P. Dalton Trans. 2006, 30, 3678.

    8. [8]

      (8) Lo, H. S.; Yip, S. K.;Wong, K. M. C.; Zhu, N. Y.; Yam, V.W. W. Organometallics 2006, 25, 3537.  

    9. [9]

      (9) McFarland, S. A.; Finney, N. S. Chem. Commun. 2003, 388.

    10. [10]

      (10) Yu, X. H.; Ge, G. P.; Zhang, G. L.; Guo, H. Q. Acta Phys. -Chim. Sin. 2010, 26, 1184. [于晓航, 葛国平, 张国林, 郭海清. 物理化学学报, 2010, 26, 1184.]

    11. [11]

      (11) Tong, B.; Mei, Q.;Wang, S.; Fang, Y.; Meng, Y.;Wang, B. J. Mater. Chem. 2008, 18, 1636.  

    12. [12]

      (12) Kirgan, R. A.; Sullivan, B. P.; Rillema, D. P. Top. Curr. Chem. 2007, 281, 45.  

    13. [13]

      (13) Roundhill, D. M. Photochemistry and Photophysics of Metal Complexes; Plenum Press: New York, 1994.

    14. [14]

      (14) Kumar, A.; Sun, S. S.; Lees, A. J. Coord. Chem. Rev. 2008, 252, 922.  

    15. [15]

      (15) Cannizzo, A.; Blanco-Rodriguez, A. M.; Nahhas, A. E.; Sebera, J.; Zalis, S.; Chergui, M. J. Am. Chem. Soc. 2008, 130, 8967.  

    16. [16]

      (16) King, K. A.;Watts, R. J. J. Am. Chem. Soc. 1987, 109, 1589.  

    17. [17]

      (17) Ayala, N. P.; Flynn, C. M., Jr.; Sacksteder, L.; Demas, J. N.; DeGraff, B. A. J. Am. Chem. Soc. 1990, 112, 3837.  

    18. [18]

      (18) Polson, M.; Fracasso, S.; Bertolasi, V.; Ravaglia, M.; Scandola, F. Inorg. Chem. 2004, 43, 1950.  

    19. [19]

      (19) Xia,W. S.; Schmehl, R. H.; Li, C. J. J. Am. Chem. Soc. 1999, 121, 5599.  

    20. [20]

      (20) Valeur, B.; Leray, I. Coord. Chem. Rev. 2000, 205, 3.  

    21. [21]

      (21) Silva, A. P.; Fox, D. B.; Huxley, A. J. M.; Moody, T. S. Coord. Chem. Rev. 2000, 205, 41.  

    22. [22]

      (22) Frausto da Silva, J. J. R.;Williams, R. J. P. The Biological Chemistry of the Elements: The Inorganic Chemistry of Life; Clarendon: Oxford, 1991.

    23. [23]

      (23) Gutknecht, J. J. Membr. Biol. 1981, 61, 61.  

    24. [24]

      (24) Ho, M. L.; Cheng, Y. M.;Wu, L. C.; Chou, P. T.; Lee, G. H.; Hsu, F. C.; Chi, Y. Polyhedron 2007, 26, 4886.  

    25. [25]

      (25) Chen, X. Y.; Shi, J.; Li, Y. M.;Wang, F. L.;Wu, X.; Guo, Q. X.; Liu, L. Org. Lett. 2009, 11, 4426.  

    26. [26]

      (26) Xu, Z.; Baek, K. H.; Kim, H. N.; Cui, J.; Qian, X.; Spring, D. R.; Shin, I.; Yoon, J. J. Am. Chem Soc. 2010, 132, 601.  

    27. [27]

      (27) Xue, L.; Liu, C.; Jiang, H. Org. Lett. 2009, 11, 1655.  

    28. [28]

      (28) Araya, J. C.; Gajardo, J.; Moya, S. A.; Aguirre, P.; Toupet, L.; Williams, J. A. G.; Escadeillas, M.; LeBozec H.; Guerchais, V. New J. Chem. 2010, 34, 21.  

    29. [29]

      (29) Zhao, N.;Wu, Y. H.;Wen, H. M.; Zhang, X.; Chen, Z. N. Organometallics, 2009, 28, 5603.  

    30. [30]

      (30) Charbonniere, L. J.; Ziessel, R. F.; Sans, C. A.; Harriman, A. Inorg. Chem. 2003, 42, 3466.  

    31. [31]

      (31) Li, C. K.; Lu, X. X.;Wong, K. M. C.; Chan, C. L.; Zhu, N.; Yam, V.W.W. Inorg. Chem. 2004, 43, 7421.  

    32. [32]

      (32) Muegge, B. D.; Richter, M. M. Anal. Chem. 2002, 74, 547.  

    33. [33]

      (33) Schmittel, M.; Lin, H. Inorg. Chem. 2007, 46, 9139.  

    34. [34]

      (34) Lin, H.; Cinar, M. E.; Schmittel, M. Dalton Trans. 2010, 39, 5130.  

    35. [35]

      (35) Ho, M. L.; Hwang, F. M.; Chen, P. N.; Hu, Y. H.; Cheng, Y. M.; Chen, K. S.; Lee, G. H.; Chi, Y.; Chou, P. T. Org. Biomol. Chem. 2006, 4, 98.  

    36. [36]

      (36) Brandel, J.; Sairenji, M.; Ichikawa, K.; Nabeshima, T. Chem. Commun. 2010, 3958.

    37. [37]

      (37) Zhao, Q.; Cao, T. Y.; Li, F. Y.; Li, X. H.; Jing, H.; Yi, T.; Huang, C. H. Organometallics 2007, 26, 2077.  

    38. [38]

      (38) Zhao, Q.; Liu, S. J.; Li, F. Y.; Yi, T.; Huang, C. H. Dalton Trans. 2008, 3836.

    39. [39]

      (39) Shi, H. F.; Liu, S. J.; Sun, H. B.; Xu,W. J.; Zhao, Q.; Huang,W. Chem. Eur. J. 2010, 16, 12158.  

    40. [40]

      (40) Yang, H.; Qian, J. J.; Li, Z. G.; Li, D. R.;Wu, H. X.; Yang, S. P. Inorg. Chim. Acta 2010, 263, 1755.

    41. [41]

      (41) Beer, P. D.; Gale, P. A. Angew. Chem. Int. Edit. 2001, 40, 486.  

    42. [42]

      (42) Special Issues on anion receptors, Coord. Chem. Rev. 2003, 240

    43. [43]

      (43) Martnez-Mnez, R.; Sancenon, F. Chem. Rev. 2003, 103, 4419.  

    44. [44]

      (44) Zhao, Q.; Liu, S. J.; Shi, M.; Li, F. Y.; Jing, H.; Yi, T.; Huang, C. H. Organometallics 2007, 26, 5922.  

    45. [45]

      (44) Zhao, Q.; Liu, S. J.; Shi, M.; Li, F. Y.; Jing, H.; Yi, T.; Huang, C. H. Organometallics 2007, 26, 5922.

    46. [46]

      (46) You, Y.; Park, S. Y. Adv. Mater. 2008, 20, 3820.  

    47. [47]

      (47) Zhao, Q.; Li, F.; Liu, S.; Yu, M.; Liu, Z.; Yi, T.; Huang, C. Inorg. Chem. 2008, 47, 9256.  

    48. [48]

      (47) Zhao, Q.; Li, F.; Liu, S.; Yu, M.; Liu, Z.; Yi, T.; Huang, C. Inorg. Chem. 2008, 47, 9256.

    49. [49]

      (49) Xu,W.; Liu, S.; Sun, H.; Zhao, X.; Zhao, Q.; Sun, S.; Cheng, S.; Ma, T.; Zhou, L.; Huang,W. J. Mater. Chem. 2011, 21, 7572.  

    50. [50]

      (49) Xu,W.; Liu, S.; Sun, H.; Zhao, X.; Zhao, Q.; Sun, S.; Cheng, S.; Ma, T.; Zhou, L.; Huang,W. J. Mater. Chem. 2011, 21, 7572.

    51. [51]

      (50) odall,W.;Williams, J. A. G. J. Chem. Soc. Dalton Trans. 2000, 2893.

    52. [52]

      (52) Lou, B.; Chen, Z. Q.; Bian Z. Q.; Huang, C. H. New J. Chem. 2010, 34, 132.  

    53. [53]

      (53) Zhao, N.;Wu, Y. H.;Wang, R. M.; Shi, L. X.; Chen, Z. N. Analyst 2011, 136, 2277.  

    54. [54]

      (54) Shahrokhian, S. Anal. Chem. 2001, 73, 5972.  

    55. [55]

      (55) Seshadri, S.; Beiser, A.; Selhub, J.; Jacques, P. F.; Rosenberg, I. H.; D?A stino, R. B.;Wilson, P.W. F. N. Engl. J. Med. 2002, 346, 476.  

    56. [56]

      (55) Seshadri, S.; Beiser, A.; Selhub, J.; Jacques, P. F.; Rosenberg, I. H.; D?A stino, R. B.;Wilson, P.W. F. N. Engl. J. Med. 2002, 346, 476.

    57. [57]

      (56) Lin,W.; Long, L.; Yuan, L.; Cao, Z.; Chen, B.; Tan,W. Org. Lett. 2008, 10, 5577.

    58. [58]

      (58) Chen, H. L.; Zhao, Q.;Wu, Y. B.; Li, F. Y.; Yang, H.; Yi, T.; Huang, C. H. Inorg. Chem. 2007, 46, 11075.  

    59. [59]

      (59) Zhao, Q.; Xiong, L.; Chen, H.;Wu, Y.; Dong, Z.; Zhou, Z.; Li, F. Inorg. Chem. 2010, 49, 6402.  

    60. [60]

      (60) Kwon, T. H.; Kim, H. J.; Hong, J. I. Chem. Eur. J. 2008, 14, 9613.  

    61. [61]

      (61) Matsumoto, T.; Urano, Y.; Shoda, T.; Kojima, H.; Nagano, T. Org. Lett. 2007, 9, 3375.  

    62. [62]

      (62) Huo, F. J.; Sun, Y. Q.; Su, J.; Chao, J. B.; Zhi, H. J.; Yin, C. X. Org. Lett. 2009, 11, 4918.  

    63. [63]

      (63) Zhao, N.;Wu, Y. H.; Shi, L. X.; Lin, O. P.; Chen, Z. N. Dalton Trans. 2010, 39, 8288.  

    64. [64]

      (64) Ma, D. L.;Wong,W. L.; Chung,W. H.; Chan, F. Y.; So, P. K.; Lai, T. S.; Zhou, Z. Y.; Leung, Y. C.;Wong, K. Y. Angew. Chem. Int. Edit. 2008, 47, 3735.  

    65. [65]

      (64) Ma, D. L.;Wong,W. L.; Chung,W. H.; Chan, F. Y.; So, P. K.; Lai, T. S.; Zhou, Z. Y.; Leung, Y. C.;Wong, K. Y. Angew. Chem. Int. Edit. 2008, 47, 3735.

    66. [66]

      (65) Liu, Y.; Li, M.; Zhao, Q.;Wu, H.; Huang, K.; Li, F. Inorg. Chem. doi: 10.1021/ic102481x

    67. [67]

      (67) Leung, S. K.; Kwok, K. Y.; Zhang, K. Y.; Lo, K. K.W. Inorg. Chem. 2010, 49, 4984.  

    68. [68]

      (68) Zhang, K. Y.; Lo, K. K.W. Inorg. Chem. 2009, 48, 6011.  

    69. [69]

      (69) Lo, K. K.W.; Chung, C. K.; Zhu, N. Chem. Eur. J. 2003, 9, 475.  

    70. [70]

      (69) Lo, K. K.W.; Chung, C. K.; Zhu, N. Chem. Eur. J. 2003, 9, 475.

    71. [71]

      (71) Huynh, L.;Wang, Z.; Yang, J.; Stoeva, V.; Lough, A.; Manners, I.;Winnik, M. A. Chem. Mater. 2005, 17, 4765.  

    72. [72]

      (72) Derosa, M. C.; Hodgson, D. J.; Enright, G. D.; Dawson, B.; Evans, C. E. B.; Crutchley, R. J. J. Am. Chem. Soc. 2004, 126, 7619.  

    73. [73]

      (73) Madina-Castillo, A. L.; Fernandez-Sanchez, J. F.; Klein, C.; Nazeeruddin, M. K.; Segura-Carretero, A.; Fernandez-Gutierrez, A.; Gr?tzel, M.; Spichiger-Keller, U. E. Analyst 2007, 132, 929.  

    74. [74]

      (73) Madina-Castillo, A. L.; Fernandez-Sanchez, J. F.; Klein, C.; Nazeeruddin, M. K.; Segura-Carretero, A.; Fernandez-Gutierrez, A.; Grätzel, M.; Spichiger-Keller, U. E. Analyst 2007, 132, 929.

    75. [75]

      (75) Mak, C. S. K.; Pentlehner, D.; Stich, M.;Wolfbeis, O. S.; Chan, W. K.; Yersin, H. Chem. Mater. 2009, 21, 2173.  

    76. [76]

      (76) Toro, M. M.; Fernandez-Sanchez, J. F.; Baranoff, E.; Nazeeruddin, M. K.; Gr?tzel, M.; Fernandez-Gutierrez, A. Talanta 2010, 82, 620.  

    77. [77]

      (77) Ohmichi, T.; Kawamoto, Y.;Wu, P.; Miyoshi, D.; Karimata, H.; Sugimoto, N. Biochemistry 2005, 44, 7125.  

    78. [78]

      (77) Ohmichi, T.; Kawamoto, Y.;Wu, P.; Miyoshi, D.; Karimata, H.; Sugimoto, N. Biochemistry 2005, 44, 7125.

    79. [79]

      (78) Whitaker, J. E.; Haughland, R. P.; Prendergast, F. G. Anal. Biochem. 1991, 194, 330.

    80. [80]

      (79) Lobnik, A.; Oehme, I.; Murkovic, I.;Wolfbeis, O. S. Anal. Chim. Acta 1998, 376, 159.

    81. [81]

      (81) Arm, K. J.; Leslie,W.;Williams, J. A. G. Inorg. Chim. Acta 2006, 359, 1222.  

    82. [82]

      (82) Aoki, S.; Matsuo, Y.; Ogura, S.; Ohwada, H.; Hisamatsu, Y.; Moromizato, S.; Shiro, M.; Kitamura, M. Inorg. Chem. 2011, 50, 806.  

    83. [83]

      (83) ldstein, D. C.; Cheng, Y. Y.; Schmidt, T.W.; Bhandbhade, M.; Thordarson, P. Dalton Trans. 2011, 40, 2053.  

    84. [84]

      (84) Han, M.; Chen, Y. M.;Wang, K. Z. New J. Chem. 2008, 32, 970.  

    85. [85]

      (85) Gill, M. R.; Garcia-Lara, G.; Foster, S. J.; Smythe, C.; Battaglia, G.; Thomas, L. A. Nature Chemistry 2009, 1, 662.  

    86. [86]

      (85) Gill, M. R.; Garcia-Lara, G.; Foster, S. J.; Smythe, C.; Battaglia, G.; Thomas, L. A. Nature Chemistry 2009, 1, 662.

    87. [87]

      (87) Liu, Z.; Bian, Z.; Bian, J.; Li, Z.; Nie, D.; Huang, C. Inorg. Chem. 2008, 47, 8025.  

    88. [88]

      (88) Xiao, L.; Chen, Z.; Qu, B.; Luo, J.; Kong, S.; ng, Q.; Kido, J. Adv. Mater. 2011, 23, 926.  

    89. [89]

      (88) Xiao, L.; Chen, Z.; Qu, B.; Luo, J.; Kong, S.; ng, Q.; Kido, J. Adv. Mater. 2011, 23, 926.

    90. [90]

      (89) Tang, X. Q.; Yu, J. S.; Li, L.;Wang, J.; Jiang, Y. D. Acta Phys. -Chim. Sin. 2008, 24, 1012. [唐晓庆, 于军胜, 李璐, 王军, 蒋亚东. 物理化学学报, 2008, 24, 1012.]

    91. [91]

      (91) McDaniel, N. D.; Coughlin, F. J.; Tinker, L. L. J. Am. Chem. Soc. 2008, 130, 210.  

    92. [92]

      (91) McDaniel, N. D.; Coughlin, F. J.; Tinker, L. L. J. Am. Chem. Soc. 2008, 130, 210.

    93. [93]

      (92) Nastasi, F.; Puntriero, F.; Campagna, S. Chem. Commun. 2007, 3556.

    94. [94]

      (94) Mydlad, M.; Bizzarri, C.; Hartmann, D.; Sarfert,W.; Schmid, G.; Cola, D. L. Adv. Funct. Mater. 2010, 20, 1812.  

    95. [95]

      (95) Lowry, M. S.; Bernhard, S. Chem. Eur. J. 2006, 12, 7970.  

    96. [96]

      (96) He, L.; Duan, L.; Qiao, J.;Wang, R.;Wei, P.;Wang, L.; Qiu, Y. Adv. Funct. Mater. 2008, 18, 2123.  

    97. [97]

      (96) He, L.; Duan, L.; Qiao, J.;Wang, R.;Wei, P.;Wang, L.; Qiu, Y. Adv. Funct. Mater. 2008, 18, 2123.

    98. [98]

      (97) Zapata, F.; Caballero, A.; Espionsa, A.; Tarraga, A.; Moina, P. Dalton Trans. 2009, 3900.

  • 加载中
    1. [1]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    2. [2]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    3. [3]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    4. [4]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    5. [5]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    6. [6]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    7. [7]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    8. [8]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    9. [9]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    10. [10]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    11. [11]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    12. [12]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    13. [13]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    14. [14]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    15. [15]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    16. [16]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    19. [19]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    20. [20]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

Metrics
  • PDF Downloads(1532)
  • Abstract views(3267)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return