Citation: HE Sai-Nan, HU Cai-Yuan, XIAO Ge, ZHENG Hua-Jun. Hydrothermal Synthesis and Amperometric Determination of Hydrogen Peroxide of Highly-Dispersed MnO2 Nanofibers[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 630-634. doi: 10.3866/PKU.WHXB201112214 shu

Hydrothermal Synthesis and Amperometric Determination of Hydrogen Peroxide of Highly-Dispersed MnO2 Nanofibers

  • Received Date: 14 October 2011
    Available Online: 21 December 2011

    Fund Project: 国家自然科学基金(20973156)资助项目 (20973156)

  • A high dispersed nanofiber cryptomelane-type manganese dioxide was synthesized by a facile hydrothermal reduction route. The morphological characterization was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure and electrochemical properties of the synthesized manganese dioxide were characterized by X-ray diffraction (XRD), Brunauer- Emmett-Teller (BET) surface area analyses, and an electrochemical workstation (EW). A glassy carbon electrode (GCE) modified with the nanostructured cryptomelane-type manganese dioxide was investigated for amperometric detection of hydrogen peroxide (H2O2) in phosphate buffer solution with a pH 7.4 at an open circuit potential of 0.2 V. The oxidation peak current was found to increase by 1.3 μA with the addition of 0.1 mmol·L-1 H2O2 based on a MnO2 nanofiber-gelatin/GCE electrode. The amperometric signals are linearly proportional to the H2O2 concentration in the range 0.1-1.5 mmol·L-1 with a correlation coefficient of 0.996 using the GCE modified with 0.1% (w, mass fraction) cryptomelane-type manganese oxides. The sensor is sensitive and its significant electrocatalytic activity results from the nanostructure of the cryptomelane-type manganese oxides. In addition, the sensor has a od reproducibility, a low detection limit, simplicity, and a low cost of construction. These results demonstrate that this material with high electrocatalytic activity offers great promise as a new class of nanostructured electrodes for biosensors.
  • 加载中
    1. [1]

      (1) Eftekhari, A. Microchim. Acta 2003, 141, 15.  

    2. [2]

      (2) Huo, H. Y.; Luo, H. Q.; Li, N. B. Microchim. Acta 2009, 167, 195.  

    3. [3]

      (3) Zhang, Y.; Kang, T. F.;Wan, Y.W.; Chen, S. Y. Microchim. Acta 2009, 165, 307.  

    4. [4]

      (4) Martinez, M. T.; Lima, A. S.; Bocchi, N.; Teixeira, M. F. S. Talanta 2009, 80, 519.  

    5. [5]

      (5) Teixeira, M. F. D. S.; Fatibello-Filho, O.; Ferracin, L. C.; Rocha-Filho, R. C.; Bocchib, N. Sensors and Actuators B 2000, 67, 96.  

    6. [6]

      (6) Xiao, T. D.; Strutt, P. R.; Benaissa, M.; Chen, H.; Kear, B. H. Nanostruct. Mater. 1998, 10, 1051.  

    7. [7]

      (7) Wang, X.; Li, Y. D. J. Am. Chem. Soc. 2001, 124, 2880.

    8. [8]

      (8) Wang, X.; Li, Y. D. Chem. Commun. 2002, 764.

    9. [9]

      (9) Xiong, Y. J.; Xie, Y.; Li, Z. Q.;Wu, C. Z. Chem. Eur. J. 2003, 9, 1645.  

    10. [10]

      (10) Han, L.; Ni, J. P.; Zhang, L. M.; Yue, B. H.; Shen, S. S.; Zhang, H.; Lu,W. C. Acta Phys. -Chim. Sin. 2011, 27, 743. [韩玲, 倪纪朋, 张良苗, 岳宝华, 申杉杉, 张浩, 陆文聪. 物理化学学报, 2011, 27, 743.]

    11. [11]

      (11) Sun, Z.; Liu, K. Y.; Zhang, H. F.; Li, A. S.; Xu, X. C. Acta Phys. -Chim. Sin. 2009, 25, 1991. [孙哲, 刘开宇, 张海峰, 李傲生, 徐小存. 物理化学学报, 2009, 25, 1991.]

    12. [12]

      (12) Lin, Y. H.; Cui, X. L.; Li, L. Y. Electrochem. Commun. 2004, 7, 166.

    13. [13]

      (13) Yao, S. J.; Yuan, S.; Xu, J. H.;Wang, Y.; Luo, J. L.; Hu, S. S. Appl. Clay Sci. 2006, 33, 35.  

    14. [14]

      (14) Sljukic, B.; Compton, R. G. Electroanalysis 2007, 19, 1275.  

    15. [15]

      (15) Cui, X. L.; Liu, G. D.; Lin, Y. H. Nanomedicine 2005, 1, 130.  

    16. [16]

      (16) Hocevar, S. B.; O revc, B.; Schachl, K.; Kalcher, K. Electroanalysis 2004, 16, 20.

    17. [17]

      (17) Chen, J.; Zhang,W. D.; Ye, J. S. Electrochem. Commun. 2008, 10, 1268.  

    18. [18]

      (18) Bai, Y. H.; Du, Y.; Xu, J. J.; Chen, H. Y. Electrochem. Commun. 2007, 9, 2611.  

    19. [19]

      (19) Tian, Z.; Tong,W.;Wang, J.; Duan, N.; Krishnan, V. V.; Suib, S. L. Science 1999, 276, 926.

    20. [20]

      (20) Xia, G. G.; Yin, Y. G.;Willis,W. S.;Wang, J. Y.; Suib, S. L. J. Catal. 1999, 185, 91.  

    21. [21]

      (21) Son, Y. C.; Makwana, V. D.; Howell, A. R.; Suib, S. L. Angew. Chem. Int. Edit. 2001, 40, 4280.  

    22. [22]

      (22) Liu, J.; Makwana, V.; Cai, J.; Suib, S. L.; Aindow, M. J. Phys. Chem. B 2003, 107, 9185.  

    23. [23]

      (23) Wang, X.; Li, Y. D. Chem. Eur. J. 2003, 9, 306.

    24. [24]

      (24) Emir, T.; Kalcher, K.; Schachl, K.; Komersova, A.; Bartos, M.; Moderegg, H.; Svancara, I.; Vytras, K. Anal. Lett. 2001, 34, 2633.  

    25. [25]

      (25) Yin, L.; Chou, J.; Chung,W.; Sun, T.; Hsiung, K.; Hsiung, S. Sensors and Actuators B 2001, 76, 187.  

  • 加载中
    1. [1]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    3. [3]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    4. [4]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    5. [5]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    6. [6]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    7. [7]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    8. [8]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    9. [9]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    11. [11]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    12. [12]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    13. [13]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    14. [14]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    15. [15]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    16. [16]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    19. [19]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    20. [20]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

Metrics
  • PDF Downloads(929)
  • Abstract views(2065)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return