Citation: HE Sai-Nan, HU Cai-Yuan, XIAO Ge, ZHENG Hua-Jun. Hydrothermal Synthesis and Amperometric Determination of Hydrogen Peroxide of Highly-Dispersed MnO2 Nanofibers[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 630-634. doi: 10.3866/PKU.WHXB201112214
-
A high dispersed nanofiber cryptomelane-type manganese dioxide was synthesized by a facile hydrothermal reduction route. The morphological characterization was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure and electrochemical properties of the synthesized manganese dioxide were characterized by X-ray diffraction (XRD), Brunauer- Emmett-Teller (BET) surface area analyses, and an electrochemical workstation (EW). A glassy carbon electrode (GCE) modified with the nanostructured cryptomelane-type manganese dioxide was investigated for amperometric detection of hydrogen peroxide (H2O2) in phosphate buffer solution with a pH 7.4 at an open circuit potential of 0.2 V. The oxidation peak current was found to increase by 1.3 μA with the addition of 0.1 mmol·L-1 H2O2 based on a MnO2 nanofiber-gelatin/GCE electrode. The amperometric signals are linearly proportional to the H2O2 concentration in the range 0.1-1.5 mmol·L-1 with a correlation coefficient of 0.996 using the GCE modified with 0.1% (w, mass fraction) cryptomelane-type manganese oxides. The sensor is sensitive and its significant electrocatalytic activity results from the nanostructure of the cryptomelane-type manganese oxides. In addition, the sensor has a od reproducibility, a low detection limit, simplicity, and a low cost of construction. These results demonstrate that this material with high electrocatalytic activity offers great promise as a new class of nanostructured electrodes for biosensors.
-
- [1]
-
[2]
(2) Huo, H. Y.; Luo, H. Q.; Li, N. B. Microchim. Acta 2009, 167, 195.
-
[3]
(3) Zhang, Y.; Kang, T. F.;Wan, Y.W.; Chen, S. Y. Microchim. Acta 2009, 165, 307.
-
[4]
(4) Martinez, M. T.; Lima, A. S.; Bocchi, N.; Teixeira, M. F. S. Talanta 2009, 80, 519.
-
[5]
(5) Teixeira, M. F. D. S.; Fatibello-Filho, O.; Ferracin, L. C.; Rocha-Filho, R. C.; Bocchib, N. Sensors and Actuators B 2000, 67, 96.
-
[6]
(6) Xiao, T. D.; Strutt, P. R.; Benaissa, M.; Chen, H.; Kear, B. H. Nanostruct. Mater. 1998, 10, 1051.
-
[7]
(7) Wang, X.; Li, Y. D. J. Am. Chem. Soc. 2001, 124, 2880.
-
[8]
(8) Wang, X.; Li, Y. D. Chem. Commun. 2002, 764.
-
[9]
(9) Xiong, Y. J.; Xie, Y.; Li, Z. Q.;Wu, C. Z. Chem. Eur. J. 2003, 9, 1645.
-
[10]
(10) Han, L.; Ni, J. P.; Zhang, L. M.; Yue, B. H.; Shen, S. S.; Zhang, H.; Lu,W. C. Acta Phys. -Chim. Sin. 2011, 27, 743. [韩玲, 倪纪朋, 张良苗, 岳宝华, 申杉杉, 张浩, 陆文聪. 物理化学学报, 2011, 27, 743.]
-
[11]
(11) Sun, Z.; Liu, K. Y.; Zhang, H. F.; Li, A. S.; Xu, X. C. Acta Phys. -Chim. Sin. 2009, 25, 1991. [孙哲, 刘开宇, 张海峰, 李傲生, 徐小存. 物理化学学报, 2009, 25, 1991.]
-
[12]
(12) Lin, Y. H.; Cui, X. L.; Li, L. Y. Electrochem. Commun. 2004, 7, 166.
-
[13]
(13) Yao, S. J.; Yuan, S.; Xu, J. H.;Wang, Y.; Luo, J. L.; Hu, S. S. Appl. Clay Sci. 2006, 33, 35.
-
[14]
(14) Sljukic, B.; Compton, R. G. Electroanalysis 2007, 19, 1275.
-
[15]
(15) Cui, X. L.; Liu, G. D.; Lin, Y. H. Nanomedicine 2005, 1, 130.
-
[16]
(16) Hocevar, S. B.; O revc, B.; Schachl, K.; Kalcher, K. Electroanalysis 2004, 16, 20.
-
[17]
(17) Chen, J.; Zhang,W. D.; Ye, J. S. Electrochem. Commun. 2008, 10, 1268.
-
[18]
(18) Bai, Y. H.; Du, Y.; Xu, J. J.; Chen, H. Y. Electrochem. Commun. 2007, 9, 2611.
-
[19]
(19) Tian, Z.; Tong,W.;Wang, J.; Duan, N.; Krishnan, V. V.; Suib, S. L. Science 1999, 276, 926.
-
[20]
(20) Xia, G. G.; Yin, Y. G.;Willis,W. S.;Wang, J. Y.; Suib, S. L. J. Catal. 1999, 185, 91.
-
[21]
(21) Son, Y. C.; Makwana, V. D.; Howell, A. R.; Suib, S. L. Angew. Chem. Int. Edit. 2001, 40, 4280.
-
[22]
(22) Liu, J.; Makwana, V.; Cai, J.; Suib, S. L.; Aindow, M. J. Phys. Chem. B 2003, 107, 9185.
-
[23]
(23) Wang, X.; Li, Y. D. Chem. Eur. J. 2003, 9, 306.
-
[24]
(24) Emir, T.; Kalcher, K.; Schachl, K.; Komersova, A.; Bartos, M.; Moderegg, H.; Svancara, I.; Vytras, K. Anal. Lett. 2001, 34, 2633.
-
[25]
(25) Yin, L.; Chou, J.; Chung,W.; Sun, T.; Hsiung, K.; Hsiung, S. Sensors and Actuators B 2001, 76, 187.
-
-
[1]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[2]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[3]
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
-
[4]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[5]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[6]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[7]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[8]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[9]
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
-
[10]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[11]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[12]
Lei Shu , Zimin Duan , Yushen Kang , Zijian Zhao , Hong Wang , Lihua Zhu , Hui Xiong , Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084
-
[13]
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
-
[14]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[15]
Laiying Zhang , Yinghuan Wu , Yazi Yu , Yecheng Xu , Haojie Zhang , Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126
-
[16]
Lei Shu , Zhengqing Hao , Kai Yan , Hong Wang , Lihua Zhu , Fang Chen , Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134
-
[17]
Hongyi Zhang , Zhihong Shi , Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030
-
[18]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[19]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[20]
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
-
[1]
Metrics
- PDF Downloads(929)
- Abstract views(2026)
- HTML views(50)