Citation: LIU Qiu-Ping, HUANG Hui-Juan, ZHOU Yang, DUAN Yan-Dong, SUN Qing-Wen, LIN Yuan. Photovoltaic Performance of Dye-Sensitized Solar Cells Based on Al-Doped TiO2 Thin Films[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 591-595. doi: 10.3866/PKU.WHXB201112161 shu

Photovoltaic Performance of Dye-Sensitized Solar Cells Based on Al-Doped TiO2 Thin Films

  • Received Date: 26 October 2011
    Available Online: 16 December 2011

    Fund Project: 国家重点基础研究发展规划项目(973) (2006CB202605) (973) (2006CB202605) 国家高技术研究发展计划项目(863) (2007AA05Z439) (863) (2007AA05Z439)国家自然科学基金项目(20973183)资助 (20973183)

  • Al-doped TiO2 thin films were synthesized by the hydrothermal method. To prepare a working electrode, a TiO2 or AlTiO2 slurry was coated onto a fluorine-doped tin oxide glass substrate by the doctor blade method and the coated substrate was sintered at 450 ° C. TiO2 and Al-doped TiO2 films were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), and tested by the dye-sensitized solar cell (DSSCs) system. The influences of Al-doping on TiO2 crystal form and the photovoltaic performance of DSSCs were investigated. X-ray photoelectron spectroscopy (XPS) data indicate that the doped Al ions exist in the form of Al3+ , and these ions play a role as e- or h+ traps and reduce the e-/h+ pair recombination rate. The corresponding Mott- Schottky plot indicates that the Al-doped TiO2 photoanode shifts the flat band potential positively. The positive shift of the flat band potential improves the driving force of injected electrons from the LUMO of the dye to the conduction band of TiO2. The Al-doped TiO2 thin film shows a photovoltaic efficiency of 6.48%, which is higher than that of the undoped TiO2 thin film (5.58%) and the short-circuit photocurrent density increases from 16.5 to 18.2 mA·cm-2.
  • 加载中
    1. [1]

      (1) Choi,W.; Termin, A.; Hoffmann, M. J. Phys. Chem. 1994, 98, 13669.  

    2. [2]

      (2) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269.  

    3. [3]

      (3) Ishii, T.; Kato, H.; Kudo, A. J. Photochem. Photobio. A: Chem. 2004, 163, 181.  

    4. [4]

      (4) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.  

    5. [5]

      (5) Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Chem. Rev. 2010, 110, 6595.  

    6. [6]

      (6) Wang, Z. S.;Yanagida, M.; Sayama, K.; Sugihara, H. Chem. Mater. 2006, 18, 2912.  

    7. [7]

      (7) Imahori, H.; Hayashi, S.; Umeyama, T.; Eu, S.; Oguro, A.; Kang, S.; Matano, Y.; Shishido, T.; Ngamsinlapasathian, S.; Yoshikawa, S. Langmuir 2006, 22, 11405.  

    8. [8]

      (8) Ma, T.; Akiyama, M.; Abe, E.; Imai, I. Nano Lett. 2005, 5, 2543.  

    9. [9]

      (9) Tian, H.; Hu, L.; Zhang, C.; Liu,W.; Huang, Y.; Mo, L.; Guo, L.; Sheng, J.; Dai, S. J. Phys. Chem. 2010, 114, 1627.

    10. [10]

      (10) Kim, C.; Kim, K.; Kim, H.; Han, Y. J. Mater. Chem. 2008, 18, 5809.  

    11. [11]

      (11) Xu,W.; Dai, S.; Hu, L.; Liang, L.;Wang, K. Phys. Lett. 2006, 23, 2288.

    12. [12]

      (12) Ko, K. H.; Lee, Y. C.; Jung, Y. J. J. Colloid Interface Sci. 2005, 283, 482.  

    13. [13]

      (13) Wang, K. P.; Teng, H. Phys. Chem. Phys. Chem. 2009, 11, 9489.

    14. [14]

      (14) Krol, R.; ossens, A.; Schoonman, J. J. Electrochem. Soc. 1997, 14, 1723.

    15. [15]

      (15) Liu, B. S.; Zhao, X. J. Surf. Sci. 2005, 595, 203.  

    16. [16]

      (16) Randeniya, L. K.; Bendavid, A.; Martin, P. J.; Preston, E,W. J. Phys. Chem. C 2007, 111, 18334.  

    17. [17]

      (17) Zhu, K.; Neale, N.; Miedaner, A.; Frank, J. Nano Lett. 2007, 7, 69.  

    18. [18]

      (18) Zhang, D.; Toshida, T.; Oekermann, T.; Furuta, K.; Minoura, H. Adv. Funct. Mater. 2006, 16, 1228.  

    19. [19]

      (19) Baiju, K.; Shajush, P.;Wunderlich,W.; Mukundan, P.; Kumar, S.;Warrier. K. J. Mol. Catal. A: Chem. 2007, 276, 41.  

    20. [20]

      (20) Furubayashi, Y.; Hitosugi, T.; Yamamoto, Y.; Inaba, K.; Kinoda, G.; Hirose, Y.; Shimada, T.; Hasegawa, T. Appl. Phys. Lett. 2005, 86, 252101.  

    21. [21]

      (21) Shi, J. F.; Xu, G.; Miao, L.; Xu, X. Q. Acta Phys. -Chim. Sin. 2011, 27, 1287. [史继富, 徐刚, 苗蕾, 徐雪青. 物理化学学报, 2011, 27, 1287.]

    22. [22]

      (22) Li, J.; Kong, F. T.;Wu, G. H.; Zhang, C. N.; Dai, S. Y. Acta Phys. -Chim. Sin. 2011, 27, 881. [李洁, 孔凡太, 武国华, 张昌能, 戴松元. 物理化学学报, 2011, 27, 881.]

    23. [23]

      (23) Lu, X.; Mou, X.;Wu, J.; Zhang, D.; Zhang, L.; Huang, F.; Fu, F.; Huang, S. Adv. Funct. Mater. 2010, 20, 509.  

    24. [24]

      (24) Feng, X.; Shankar, K.; Paulose, M.; Grimes, C. Angew. Chem. Int. Edit. 2009, 48, 8095.  

    25. [25]

      (25) Henglein, A. Chem. Rev. 1989, 89, 1861.  

  • 加载中
    1. [1]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    2. [2]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    3. [3]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    10. [10]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    11. [11]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    12. [12]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    15. [15]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    16. [16]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    17. [17]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    18. [18]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    19. [19]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    20. [20]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

Metrics
  • PDF Downloads(1062)
  • Abstract views(3183)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return