Citation: SUN Xian-Zhong, ZHANG Xiong, ZHANG Da-Cheng, MA Yan-Wei. Activated Carbon-Based Supercapacitors Using Li2SO4 Aqueous Electrolyte[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 367-372. doi: 10.3866/PKU.WHXB201112131
-
In this work, we prepared activated carbon-based symmetric supercapacitors using Li2SO4 aqueous electrolyte instead of H2SO4 and KOH, and obtained devices with an improved working voltage of 1.6 V from 1.0 V. Cyclic voltammetry and galvanostatic charging/discharging measurements were used to study the electrochemical properties. The results showed that the electrode specific capacitance can reach 129 F·g-1, and the energy density can be as high as 10 Wh·kg-1 at a power density of 160 Wh·kg-1. Electrochemical impedance analysis measurements showed that the charge-transfer resistance of the capacitors decreased markedly with the increase of the concentration of Li2SO4, and the rate capability improved accordingly. The leakage current of the supercapacitor was 0.22 mA after constant-voltage charging at 1.6 V for 1 h, and the columbic efficiency was nearly 100%. The capacitance of the supercapacitor remained above 90% after 5000 charge-discharge cycles. Activated carbon-based supercapacitors using Li2SO4 aqueous electrolyte have many advantages, such as high working voltage, high energy density, and environmental compatibility, and therefore have od industrialization prospects.
-
Keywords:
-
Supercapacitor
, - Activated carbon,
- Neutral aqueous electrolyte,
- Li2SO4
-
-
- [1]
-
[2]
(2) Ji, Q. Q.; Guo, P. Z.; Zhao, X. S. Acta Phys. -Chim. Sin. 2010, 26, 1254. [季倩倩, 郭培志, 赵修松. 物理化学学报, 2010, 26, 1254.]
-
[3]
(3) Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai,W.; Ferreira, P. J.; Pirkle, A.;Wallace, R. M.; Cychosz, K. A.; Thommes, M.; Su, D.; Stach, E. A.; Ruoff, R. S. Science 2011, 332, 1537.
- [4]
-
[5]
(5) Chen, Y.; Zhang, X.; Yu, P.; Ma, Y.W. J. Power Sources 2010, 195, 3031.
-
[6]
(6) Chen, Y.; Zhang, X.; Zhang, D. C.; Yu, P.; Ma, Y.W. Carbon 2011, 49, 573.
-
[7]
(7) Zhang, D. C.; Zhang, X.; Chen, Y.; Yu, P.;Wang, C. H.; Ma, Y. W. J. Power Sources 2011, 196, 5990.
-
[8]
(8) Yu, L. Q.; Chen, S. L.; Chang, S.; Li, Y. H.; Gao, Y. Y.;Wang, G. L.; Cao, D. X. Acta Phys. -Chim. Sin. 2011, 27, 615. [于丽秋, 陈书礼, 常莎, 李云虎, 高胤义, 王贵领, 曹殿学. 物理化学学报, 2011, 27, 615.]
-
[9]
(9) Wang, H.; Gao, Q.; Jiang, L. Small 2011, 7, 2454.
-
[10]
(10) Lu, X. H.; Zheng, D. Z.; Zhai, T.; Liu, Z. Q.; Huang, Y. Y.; Xie, S. L.; Tong, Y. X. Energ. Environ. Sci. 2011, 4, 2915.
-
[11]
(11) Xu, B.; Zhang, H.; Cao, G. P.; Zhang,W. F.; Yang, Y. S. Prog. Chem. 2011, 23, 605.
-
[12]
(12) Xu, B.; Yue, S. F.; Sui, Z. Y.; Zhang, X. T.; Hou, S. S.; Cao, G. P.; Yang, Y. S. Energ. Environ. Sci. 2011, 4, 2826.
-
[13]
(13) Lin, P.; She, Q. J.; Hong, B. L.; Liu, X. A. J.; Shi, Y. N.; Shi, Z.; Zheng, M. S.; Dong, Q. F. J. Electrochem. Soc. 2010, 157, A818.
-
[14]
(14) Deng, L.; Zhu, G.;Wang, J.; Kang, L.; Liu, Z. H.; Yang, Z.; Wang, Z. J. Power Sources doi: 10.1016/j.jpowsour. 2011.09.005.
-
[15]
(15) Li,W. C.; Gao, P. C.; Lu, A. H. J. Power Sources 2011, 196, 4095.
-
[16]
(16) Brezesinski, T.;Wang, J.; Tolbert, S. H.; Dunn, B. Nat. Mater. 2010, 9, 146.
-
[17]
(17) Tang,W.; Liu, L.; Tian, S.; Li, L.; Yue, Y.;Wu, Y.; Zhu, K. Chem. Commun. 2011, 47, 10058.
-
[18]
(18) Hu, G. X.; Li, C. X.; ng, H. J. Power Sources 2010, 195, 6977.
-
[19]
(19) Wen, Z. B.; Tian, S.; Qu, Q. T.;Wu, Y. P. Prog. Chem. 2011, 23, 589. [温祖标, 田舒, 曲群婷, 吴宇平. 化学进展, 2011, 23, 589.]
-
[20]
(20) Li, J. M.; Chang, K. H.; Hu, C. C. Electrochem. Commun. 2010, 12, 1800.
- [21]
-
[22]
(22) Mosqueda, H. A.; Crosnier, O.; Athouel, L.; Dandeville, Y.; Scudeller, Y.; Guillemet, P.; Schleich, D. M.; Brousse, T. Electrochim. Acta 2010, 55, 7479.
-
[23]
(23) Zhang, X.; Yang,W. S.; Ma, Y.W. Electrochem. Solid. St. 2009, 12, A95.
-
[24]
(24) Qu, Q. T.;Wang, B.; Yang, L. C.; Shi, Y.; Tian, S.;Wu, Y. P. Electrochem. Commun. 2008, 10, 1652.
-
[25]
(25) Demarconnay, L.; Raymundo-Piñ?ero, E.; Béguin, F. Electrochem. Commun. 2010, 12, 1275.
-
[26]
(26) Béguin, F.; Jurewicz, K.; Frackowiak, E. Appl. Phys. A 2004, 78, 981.
-
[27]
(27) Khomenko, V.; Raymundo-Pin?ero, E.; Béguin, F. J. Power Sources 2010, 195, 4234.
-
[28]
(28) Xu, C.; Du, H.; Li, B.; Kang, F.; Zeng, Y. J. Electrochem. Soc. 2009, 156, A435.
-
[29]
(29) Li, J.; Lai, Y. Q.; Jin, X. D.; Peng, R. F.; Liu, Y. X. Chinese Battery Industry 2010, 15, 131. [李晶, 赖延清, 金旭东, 彭汝芳, 刘业翔. 电池工业, 2010, 15, 131.]
-
-
[1]
Jianjun LI , Mingjie REN , Lili ZHANG , Lingling ZENG , Huiling WANG , Xiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187
-
[2]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[3]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[4]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[5]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[6]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[7]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[8]
Wen LUO , Lin JIN , Palanisamy Kannan , Jinle HOU , Peng HUO , Jinzhong YAO , Peng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418
-
[9]
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
-
[10]
Cuiwu MO , Gangmin ZHANG , Chao WU , Zhipeng HUANG , Chi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045
-
[11]
Shuangxi Li , Huijun Yu , Tianwei Lan , Liyi Shi , Danhong Cheng , Lupeng Han , Dengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240
-
[12]
Ziheng Zhuang , Xiao Xu , Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040
-
[13]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[14]
Mingjiao Lu , Zhixing Wang , Gui Luo , Huajun Guo , Xinhai Li , Guochun Yan , Qihou Li , Xianglin Li , Ding Wang , Jiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638
-
[15]
Huyi Yu , Renshu Huang , Qian Liu , Xingfa Chen , Tianqi Yu , Haiquan Wang , Xincheng Liang , Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253
-
[16]
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
-
[17]
Yu-Yu Tan , Lin-Heng He , Wei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986
-
[18]
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
-
[19]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[20]
Kunyao Peng , Xianbin Wang , Xingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274
-
[1]
Metrics
- PDF Downloads(1451)
- Abstract views(2578)
- HTML views(17)