Citation: YAN Bing-Xi, LUO Sheng-Yun, SHEN Jie. Photoelectric Properties of Mo Doped TiO2 Thin Films Deposited by DC Reactive Magnetron Sputtering[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 381-386. doi: 10.3866/PKU.WHXB201112123 shu

Photoelectric Properties of Mo Doped TiO2 Thin Films Deposited by DC Reactive Magnetron Sputtering

  • Received Date: 5 September 2011
    Available Online: 12 December 2011

    Fund Project: 国家重点基础研究发展规划项目(973) (2010CB933703, 2012CB934303)资助 (973) (2010CB933703, 2012CB934303)

  • Nanocrystalline TiO2 thin films doped with different concentrations of Mo were deposited by direct current (DC) reactive magnetron sputtering. The influence of Mo on surfaces, crystal structures, the valence states of elements and the absorption band of Mo doped TiO2 films were characterized by means of atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Ultraviolet-visible spectroscopy (UV-Vis). To investigate the photoelectric characteristic of ITO (indium tin oxide)/Mo-TiO2 electrodes, a series of cyclic voltammetry experiments were conducted. The results indicate that an appropriate amount of Mo atoms, observed as Mo6+ and Mo5+ by XPS, could inhibit the crystal growth of particles, enhance the surface roughness of the Mo doped TiO2 thin film, and bring about a remarkable red shift of the absorption spectra. As the concentration of Mo increased, the energy gap declined at first until the amount of doped Mo eventually reached 3.6% (n(Mo)/n(Ti)), when a blue shift of spectra resulted and the energy gap grew wider. The sample doped with 0.9% Mo was irradiated with a Xe lamp and showed the highest photocurrent, which continued to increase with increasing voltage exerted on the anode. An increase in Mo concentration resulted in a decrease in photocurrent. Compared to the pure TiO2 film, the sample with 3.6% Mo had a much lower photocurrent. Our experiments demonstrate that Mo doping, when the concentration was controlled under a relatively low limit, brought about a significant improvement of the photoelectric properties of the TiO2 films. The highest photocurrent observed is 2.4 times that of the sample with no Mo doping.
  • 加载中
    1. [1]

      (1) Fujishima, A.; Hashimoto, K.;Watanabe, T. TiO2 Photocatalysis: Fundamentals and Applications; BKC Inc. Press: Tokyo, 1999.

    2. [2]

      (2) Zhang, X. Y.; Cui, X. L. Acta Phys. -Chim. Sin. 2009, 25 (9), 1829. [张晓艳, 崔晓莉. 物理化学学报, 2009, 25 (9), 1829.]

    3. [3]

      (3) Nair, P. B.; Justinvictor, V. B.; Daniel, G. P. Appl. Surf. Sci. 2011, 257, 10869.  

    4. [4]

      (4) Du, Y. K.; Gan, Y. Q.; Hua, N. P. Chem. Res. Appl. 2004, 16, 802. [杜玉扣, 甘玉琴, 华南平. 化学研究与应用, 2004, 16, 802.]

    5. [5]

      (5) Zhan, S. X.; Fan, S. M.; Lin, Z. M. Acta Sci. Nat. Univ. Suny. 2001, 40 (2), 125. [湛社霞, 范山湖, 林作梅. 中山大学学报 (自然科学版), 2001, 40 (2), 125.]

    6. [6]

      (6) Lu, P.; Yao, M. M.; Zhang, Y.; Xia, G. M. Bull. Chin. Cer. Soc. 2003, 22 (2), 34. [卢萍, 姚明明, 张颖, 夏光明. 硅酸盐通报, 2003, 22 (2), 34.]

    7. [7]

      (7) Aramend, M. A.; Colmenares, J. C.; Marinas, A. Catal. Today 2007, 128 (3-4), 235.

    8. [8]

      (8) Wilke, K.; Breuer, H. Photochem. Photobio. A: Chem. 1999, 121 (1), 49.

    9. [9]

      (9) Cui, X. L.; Jiang, Z. Y. Prog. Chem. 2002, 14 (5), 325. [崔晓莉, 江志裕. 化学进展, 2002, 14 (5), 325.]

    10. [10]

      (10) Du, Y. K.; Gan, Y. Q.; Yang, P.; Cuie, Z.; Hua, N. P. Mater. Chem. Phys. 2007, 103, 446.  

    11. [11]

      (11) Shahmoradi, B.; Ibrahim, I. A.; Sakamoto, N.; Ananda, S.; Guru, T. N.; Soga, K; Byrappa, K.; Parsons, S.; Shimizu, Y. Environ. Technol. 2010, 31 (11), 1213.

    12. [12]

      (12) Li, C. X.; Zhang, D.; Jiang, Z. H. New J. Chem. 2010, 35, 423.

    13. [13]

      (13) Vomiero, A.; Della, M. G.; Ferroni, M.; Martinelli. G.; Guidi, V.; Comini, E.; Sberveglieri, G.; Mater. Sci. Engin. B 2003, 101 , 216.

    14. [14]

      (14) Jeon, M. S.; Yoon,W. S.; Joo, H.; Lee, T. K.; Lee, H. Appl. Surf. Sci. 2000, 165 (2-3), 209.

    15. [15]

      (15) Dong, P. Y.; Liu, B.;Wang, Y. H.; Pei, H. H. J. Mater. Res. 2010, 25 (12), 2392.

    16. [16]

      (16) Tan, K. Q.; Zhang, H. R.; Xie, C. F.; Zheng, H.W.; Gu, Y. Z.; Zhang,W. F. Catal. Commun. 2010, 11, 331.  

    17. [17]

      (17) Chen, G. H.; Yan, R. Q.; Liang, H. D. Bull. Chin. Cer. Soc. 2009, 28 (5), 944. [陈桂华, 闫瑞强, 梁华定. 硅酸盐通报, 2009, 28 (5), 944.]

    18. [18]

      (18) Al-Kandari, H.; Al-Kharafi, F.; Katrib, A. Appl. Catal. A: Gen. 2009, 361 (1-2), 81.

    19. [19]

      (19) Ma, H. Q.; Tan, X.; Zhu, H. M. J. Chin. Soc. Rare Earths 2003, 21 (4), 445. [马红钦, 谭欣, 朱慧铭. 中国稀土学报, 2003, 21 (4), 445.]

    20. [20]

      (20) Zhu, J.; Chen, F.; Zhang, J. L.; Chen, H. J.; Anpo, M. J. Photochem. Photobio. A: Chem. 2006, 180 (1-2), 196.

    21. [21]

      (21) Bange, K.; Ottermann, C. R.; Anderson, O.; Jeschkowski, U.; Laube, M.; Feile, R. Thin Solid Films 1991, 197, 279.  

    22. [22]

      (22) pel,W.; Anderson, J. A.; Frnnkel, D. Surf. Sci. 1984, 139, 333.  

    23. [23]

      (23) Yin, L. S.; Zhou, Q. F.; Tang, X. G. J. Funct. Mater. 1999, 30 (5), 498. [尹荔松, 周歧发, 唐新桂. 功能材料, 1999, 30 (5), 498.]

    24. [24]

      (24) Han,W. P.; Yin, X. L.; Li, Y. Z. Chin . J. Catal. 1992, 13 (1), 19. [韩维屏, 尹喜林, 李永战. 催化学报, 1992, 13 (1), 19.]

    25. [25]

      (25) Xie, L. G.;Wang, J. X.; Shen, G. J.;Weng,W. J.; Du, P. Y.; Han, G. R. Funct. Mater. 2005, 36 (3), 411. [谢莲革, 汪建勋, 沈鸽, 翁文剑, 杜丕一, 韩高荣. 功能材料, 2005, 36 (3), 411.]

    26. [26]

      (26) Yu, J. C.; Yu, J.; Ho,W.; Jiang, Z.; Zhang, L. J. Photochem. Photobio. A: Chem. 2002, 14, 3808.

    27. [27]

      (27) Zhang P. Y.; Yu, G.; Jiang, Z. P. Rev. Semicond. Photocatal. Modif. 1997, 5 (3), 1. [张彭义, 余刚, 蒋展鹏. 环境科学进展, 1997, 5 (3), 1.]

    28. [28]

      (28) Zhang,W.; Cui, X. L.; Jiang, Z. Y. Acta Phys. -Chim. Sin. 2008, 24 (11), 1975. [张维, 崔晓莉, 江志裕. 物理化学学报, 2008, 24 (11), 1975.]

  • 加载中
    1. [1]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    4. [4]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    5. [5]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    6. [6]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    7. [7]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Shanying Chen Kangning Huo Ke Qi Jingyi Li Shuxin Li Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067

    10. [10]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    11. [11]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    12. [12]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    13. [13]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    14. [14]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    15. [15]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    16. [16]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    17. [17]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    18. [18]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

Metrics
  • PDF Downloads(915)
  • Abstract views(1998)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return