Citation: WU Xiao-Qin, ZONG Rui-Long, ZHU Yong-Fa. Enhanced MnO2 Nanorods to CO and Volatile Organic Compounds Oxidative Activity by Platinum Nanoparticles[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 437-444. doi: 10.3866/PKU.WHXB201112082 shu

Enhanced MnO2 Nanorods to CO and Volatile Organic Compounds Oxidative Activity by Platinum Nanoparticles

  • Received Date: 29 September 2011
    Available Online: 8 December 2011

    Fund Project: 国家自然科学基金(20925725) (20925725) 国家重点基础研究发展规划项目(973) (2007CB613303) (973) (2007CB613303)江西省教育厅科技项目(GJJ11507)资助 (GJJ11507)

  • Pure-phase α-MnO2 and δ-MnO2 nanorods were synthesized through an easy solution-based hydrothermal method. Platinum nanoparticles supported by the obtained MnO2 nanorods were prepared by the colloid deposition process. The microstructure and adsorption activity of the obtained catalysts were researched by different techniques such as transmission electron microscopy (TEM), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption measurements, and H2 temperature-programmed reduction (H2-TPR). The cataluminescence (CTL) properties of CO and volatile organic compounds (VOCs), such as benzene and toluene, on the resultant catalysts were explored. The results showed that the platinum nanoparticles were well distributed in α-MnO2 and δ-MnO2. In addition, the Pt load process does not affect the crystal phase structure of the α-MnO2 nanorods, but can generate structural changes in the δ-MnO2 nanorods. The phase transformation did not the result of the reaction between the δ-MnO2 nanorods and Pt as shown in the XPS study. The α-MnO2 and δ-MnO2 nanorods showed a high catalytic oxidative activity toward CO, benzene, and toluene, and δ-MnO2 showed a higher activity than the α-MnO2 phase. Although, the Pt load led to a decrease in the surface area of the MnO2 nanorods which was confirmed by the N2 adsorption-desorption measurements, but the H2-TPR results showed that the interaction between Pt and MnO2 was intense, which significantly enhanced its catalytic activity. The Pt/δ-MnO2 nanorods exhibited a higher activity than Pt/α-MnO2. CTL research showed that the activities of the four catalysts increased in the order of α-MnO2≤ δ-MnO2 < Pt/α-MnO2 < Pt/δ-MnO2, and the H2-TPR results were consistent. Pt loading significantly enhanced the catalytic oxidative activity of α-MnO2 and δ-MnO2 nanorods to CO, benzene, and toluene.
  • 加载中
    1. [1]

      (1) Amann, M.; Lutz, M. J. Hazard. Mater. 2000, 78, 41.  

    2. [2]

      (2) Li, N.; Gaillard, F. Appl. Catal. B: Environ. 2009, 88, 152.  

    3. [3]

      (3) Aguero, F. N.; Barbero, B. P.; Gambaro, L.; Cadús, L. E. Appl. Catal. B: Environ. 2009, 91, 108.  

    4. [4]

      (4) Li, Y.; Zhang, X.; He, H.; Yu, Y.; Yuan, T.; Tian, Z.;Wang, J.; Li, Y. Appl. Catal. B: Environ. 2009, 89, 659.  

    5. [5]

      (5) Gandhe, A. R.; Rebello, J. S.; Figueiredo, J. L.; Fernandes, J. B. Appl. Catal. B: Environ. 2007, 72, 129.  

    6. [6]

      (6) Liotta, L. F. Appl. Catal. B: Environmental. 2010, 100, 403.

    7. [7]

      (7) Li, H. F.; Lu, G. Z.; Dai, Q. G.;Wang, Y. Q.; Guo, Y.; Guo, Y. L. Appl. Catal. B: Environ. 2011, 102, 475.  

    8. [8]

      (8) Diehl, F.; Barbier, J. Jr,; Duprez, D.; Guibard, I.; Mabilon, G. Appl. Catal. B: Environ. 2010, 95, 217.  

    9. [9]

      (9) He, C.; Li, J.; Li, P.; Cheng, J.; Hao, Z.; Xu, Z. P. Appl. Catal. B: Environ. 2010, 96, 466.  

    10. [10]

      (10) Pitkäaho, S.; Ojala, S.; Maunula, T.; Savimäki, A.; Kinnunen, T.; Keiski, R. L. Appl. Catal. B: Environ. 2011, 102, 395.  

    11. [11]

      (11) Ousmane, M.; Liotta, L. F.; Carlo, G. D.; Pantaleo, G.; Venezia, A. M.; Deganello, G.; Retailleau, L.; Boreave, A.; Giroir- Fendler, A. Appl. Catal. B: Environ. 2011, 101, 629.  

    12. [12]

      (12) Kim, S. C. J. Hazard. Mater. B 2002, 91, 285.  

    13. [13]

      (13) Rivas, B.; López-Fonseca, R.; Gutiérrez-Ortiz, M.; Giérrez- Ortiz, J. I. Appl. Catal. B: Environ. 2011, 101, 317.  

    14. [14]

      (14) Wang, X.; Na, N.; Zhang, S. C.;Wu, Y. Y.; Zhang, X. L. J. Am. Chem. Soc. 2007, 129, 6062.  

    15. [15]

      (15) Comotti, M.; Li,W. C.; Spliethoff, B.; Schüth, F. J. Am. Chem. Soc. 2006, 128, 917.  

    16. [16]

      (16) Bulgan, G.; Zong, R. L.; Liang, S. H.; Yao,W. Q.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2008, 24, 1547. [Bulgan G., 宗瑞隆, 梁淑惠, 姚文清, 朱永法. 物理化学学报, 2008, 24, 1547.]

    17. [17]

      (17) Zhang, C.; He, H. Catal. Today 2007, 126, 345.  

    18. [18]

      (18) Beauchet, R.; Mijoin, J.; Batonneau-Gener, I.; Magnoux, P. Appl. Catal. B: Environ. 2010, 100, 91.  

    19. [19]

      (19) Wu, X. Q.; Zong, R. L.; Mu, H. J.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2010, 26, 3002. [吴小琴, 宗瑞隆, 牟豪杰, 朱永法. 物理化学学报, 2010, 26, 3002.]

    20. [20]

      (20) Song, Y. Q.; Kang, C. L.; Feng, Y. L.; Liu, F.; Zhou, X. L.; Wang, J. A.; Xu, L. Y. Catal. Today 2009, 148, 63.  

    21. [21]

      (21) Mitsui, T.; Tsutsui, K.; Matsui, T.; Kikuchi, R.; Eguchi, K. Appl. Catal. B: Environ. 2008, 78, 158.  

    22. [22]

      (22) Lahousse, C.; Bernier, A.; Grange, P.; Delmon, B.; Papaefthimiou, P.; Ioannides, T.; Verykiosy, X. J. Catal .1998, 178, 214.  

    23. [23]

      (23) Lee, S. J.; Gavriilidis, A.; Pankhurst, Q. A.; Kyek, A.;Wagner, F. E.;Wong, P. C. L.; Yeung, K. L. J. Catal. 2001, 200, 298.  

    24. [24]

      (24) Hamoudi, S.; Larachi, F.; Adnot, A.; Sayari, A. J. Catal. 1999, 185, 333.  

    25. [25]

      (25) Liang, S. H.; Teng, F.; Bulgan, G.; Zong, R. L.; Zhu, Y. F. J. Phys. Chem. C 2008, 112, 5307.  

    26. [26]

      (26) Teng, F.; Yao,W. Q.; Zhu, Y. F.; Chen, M. D.;Wang, R. H.; Mho, S.; Meng, D. D. J. Phys. Chem. C 2009, 113, 3089.  

    27. [27]

      (27) Wang, X.; Li, Y. D. Chem. Eur. J. 2003, 9, 300.  

    28. [28]

      (28) Chakraborty, S.; Raj, C. R. Sensors and Actuators B 2010, 147, 222.  

    29. [29]

      (29) Xu, R.;Wang, X.;Wang, D. S.; Zhou, K. B.; Li, Y. D. J. Catal. 2006, 237, 426.  

    30. [30]

      (30) Wang, L. C.; Liu, Y. M.; Chen, M.; Cao, Y.; He, H. Y.; Fan, K. N. J. Phys. Chem. C 2008, 112, 6981.  

    31. [31]

      (31) Banerjee, D.; Nesbitt, H.W. Geochim Cosmochim Acta 2001, 65, 1703.  

    32. [32]

      (32) Wang, L. C.; He, L.; Liu, Q.; Liu, Y. M.; Chen, M.; Cao, Y.; He, H. Y.; Fan, K. N. Appl. Catal. A: Gen. 2008, 344, 150.  

    33. [33]

      (33) Kapteijn, F.; van Langeveld, A. D.; Moulijn, J. A.; Andreini, A.; Vuurman, M. A.; Turek, A. M.; Jehng, J. M.;Wachs, I. E. J. Catal. 1994, 150, 94.  

    34. [34]

      (34) Muilenbergy, G. E. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Minnesota, 1979.

    35. [35]

      (35) Srinivasan, B.; Gardner, S. D. Surf. Interface Anal. 1998, 26, 1035.  

    36. [36]

      (36) Zhang, L. C.; Zhou, Q.; Liu, Z. H.; Hou, X. D.; Li, Y. B.; Lv, Y. Chem. Mater. 2009, 21, 5066.  

    37. [37]

      (37) Breysse, M.; Claudel, B.; Faure, L.; Guenin, M.;Williams, R. J. J.;Wolkenstein, T. J. Catal. 1976, 45, 137.  

  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    4. [4]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    5. [5]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    6. [6]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    7. [7]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    11. [11]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    12. [12]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    13. [13]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    17. [17]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    18. [18]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    19. [19]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    20. [20]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

Metrics
  • PDF Downloads(976)
  • Abstract views(3302)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return