Citation: WU Gui-Sheng, MAO Dong-Sen, LU Guan-Zhong, CAO Yong, FAN Kang-Nian. In situ Infrared Characterization of Methanol Adsorption on ZrO2 Modified Cu Catalysts[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 433-436. doi: 10.3866/PKU.WHXB201112062 shu

In situ Infrared Characterization of Methanol Adsorption on ZrO2 Modified Cu Catalysts

  • Received Date: 17 October 2011
    Available Online: 6 December 2011

    Fund Project: 上海重点学科(J51503) (J51503)上海市分子催化和功能材料重点实验室(2009KF06)资助项目 (2009KF06)

  • The adsorption and reaction of methanol on Cu and ZrO2/Cu were investigated using in situ infrared diffuse reflectance spectroscopy, in which the catalysts were reduced at different temperatures in order to change the content of surface oxygen species and investigate the change trends of methanol adsorption and reaction over the catalysts with the oxygen species content. The results show that methanol is adsorbed on the surface of Cu to produce CO2 via the intermediate of adsorbed formaldehyde, while the intermediate of formate is formed on the surface of ZrO2/Cu. The production rate of CO2 via the intermediate becomes slower with the rise of the reduction temperature of the catalysts, illustrating that the content of oxygen species on the surface of the catalysts determines the formation of the intermediate and the reaction rate.
  • 加载中
    1. [1]

      (1) Wu, G.; Sun, Y.; Li, Y.; Jiao, H.; Xiang, H.; Xu, Y. J. Mol. Struct. 2003, 626, 287.

    2. [2]

      (2) Wu, G. S.; Ren, J.; Sun, Y. H. Acta Phys. -Chim. Sin. 1999, 15, 564. [吴贵升, 任杰, 孙予罕. 物理化学学报, 1999, 15, 564.]

    3. [3]

      (3) Yao, C.;Wang, L.; Liu, Y.;Wu, G.; Cao, Y.; Dai,W.; He, H.; Fan, K. Appl. Catal. A 2006, 297, 151.  

    4. [4]

      (4) Bianchi, D.; Chafik, T.; Khalfallah, M.; Teichner, S. J. Appl. Catal. A 1993, 105, 223.  

    5. [5]

      (5) Takezawa, N.; Shimokawabe, M.; Hiramatsu, H.; Sugiura, H.; Asakawa, T.; Kobayashi, H. React. Kinet. Catal. Lett. 1987, 33, 191.  

    6. [6]

      (6) Bianchi, D.; Chafik, T.; Khalfallah, M.; Teichner, S. J. Appl. Catal. A 1993, 101, 297.  

    7. [7]

      (7) Bianchi, D.; Chafik, T.; Khalfallah, M.; Teichner, S. J. Appl. Catal. A 1994, 112, 57.  

    8. [8]

      (8) Bianchi, D.; Chafik, T.; Khalfallah, M.; Teichner, S. J. Appl. Catal. A 1994, 112, 219.  

    9. [9]

      (9) Szizybalski, A.; Girgsdies, F.; Rabis, A.;Wang, Y.; Niederberger, M.; Ressler, T. J. Catal. 2005, 233, 297.  

    10. [10]

      (10) Fisher, I. A.; Bell, A. T. J. Catal. 1997, 172, 222.  

    11. [11]

      (11) Sun, Y.; Sermon, P. A. J. Chem. Soc. Chem. Commun. 1993, 1242.

    12. [12]

      (12) Wu, G. S.;Wang, Y. H.; Mao, D. S.; Lu, G. Z.; Cao, Y.; Fan, K. N. Acta Chim. Sin. 2007, 65, 1757. [吴贵升, 王宇红, 毛东森, 卢冠忠, 曹勇, 范康年. 化学学报, 2007, 65, 1757]

    13. [13]

      (13) Zhang, X.; Shi, P.; Zhao, J.; Zhao, M.; Liu, C. Fuel Processing Technology 2003, 83, 183.  

    14. [14]

      (14) Wu, G.; Mao, D.; Lu, G.; Cao, Y.; Fan, K. Catal. Lett. 2009, 130, 177.  

    15. [15]

      (15) Zhang, X.; Sun, Y.; Peng, S. Fuel 2003, 81, 1619

    16. [16]

      (16) Rhodes, M. D.; Pokrovski, K. A.; Bell, A. T. J. Catal. 2005, 233, 210.  

    17. [17]

      (17) Nitta, Y.; Suwata, O.; Ikeda, Y.; Okamoto, Y.; Imanaka, T. Catal. Lett. 1994, 26, 345.  

    18. [18]

      (18) Wachs, I. E.; Masix, R. J. J. Catal. 1978, 53, 208.  

    19. [19]

      (19) Narishige, N.; Niwa, M. Catal. Lett. 2001, 71, 63.  

    20. [20]

      (20) Fisher, I. A.; Bell, A. T. J. Catal. 1999, 184, 357.  

    21. [21]

      (21) Fisher, I. A.; Bell, A. T. J. Catal. 1998, 178, 153.  

    22. [22]

      (22) Liu, X. M.; Lu, G. Q.; Yan, Z. F.; Beltramini, J. Ind. Eng. Chem. Res. 2003, 42, 6518.  

    23. [23]

      (23) Tang, Q.; Hong, Q.; Liu, Z. J. Catal. 2009, 263, 114.  

  • 加载中
    1. [1]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    2. [2]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    3. [3]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    4. [4]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    5. [5]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    6. [6]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    7. [7]

      Junyi YuYin ChengAnhong CaiXianfeng HuangQingrui Zhang . Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes. Chinese Chemical Letters, 2025, 36(2): 110549-. doi: 10.1016/j.cclet.2024.110549

    8. [8]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    9. [9]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    10. [10]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    11. [11]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    12. [12]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    13. [13]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    14. [14]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    15. [15]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    16. [16]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    17. [17]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    18. [18]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    19. [19]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    20. [20]

      Haiming WuGaya N. AndrewRajini AnumulaZhixun Luo . Corrigendum to 'How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence' [Chin. Chem. Lett. 35 (2024) 108340]. Chinese Chemical Letters, 2024, 35(12): 109912-. doi: 10.1016/j.cclet.2024.109912

Metrics
  • PDF Downloads(674)
  • Abstract views(2366)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return