Citation: SHI Ji-Cheng, XU Hong-Feng, LU Lu, FU Jie. Synthesis and Characterization of Nd2Fe14B/PANI and Its Function during the Oxygen Transfer Process[J]. Acta Physico-Chimica Sinica, ;2011, 27(11): 2625-2631. doi: 10.3866/PKU.WHXB20111133 shu

Synthesis and Characterization of Nd2Fe14B/PANI and Its Function during the Oxygen Transfer Process

  • Received Date: 25 July 2011
    Available Online: 20 September 2011

    Fund Project: 国家自然科学基金(20976018) (20976018)辽宁省高校优秀人才支持计划(2008RC09)资助项目 (2008RC09)

  • Nd2Fe14B/PANI magnetic powder was prepared by ball milling and in-situ polymerization. The samples were characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The function of Nd2Fe14B/PANI in the oxygen transfer process was determined using an electrochemical three electrode system and a zinc air battery. The results showed that Nd2Fe14B/PANI was a one-dimensional lamellar nanostructured material with an electrical conductivity of 0.54 S·cm-1, an intrinsic coercive force of 149.57 kA·m-1, and a residual magnetization of 20.27 A·m2·kg-1. For a 0.40 mg·cm-2 Nd2Fe14B/PANI load density the magnetic electrode reached a higher double electric layer capacitance, a smaller charge transfer resistance than a nonmagnetic electrode and the polarization current of the magnetic zinc air battery also increased. For a 3.60 mg·cm-2 load density the results were contrary to those of the 0.40 mg· cm-2 load density test. We found that the micro magnetic field promoted the oxygen transfer process and improved the zinc air battery performance when the Nd2Fe14B/PANI load density was less than 0.89 mg· cm-2. At a load density higher than 3.56 mg·cm-2, the micro magnetic field inhibited oxygen transfer and reduced the zinc air battery discharge performance. The PANI in this material also improved the zinc air battery discharge performance.
  • 加载中
    1. [1]

      (1) Gerard, M.; Poirot-Crouvezier, J. P.; Hissel, D.; Pera, M. C. Int. J. Hydrog. Energy 2010, 35, 12295.  

    2. [2]

      (2) Sapkota, P.; Kim, H. J. Ind. Eng. Chem. 2009, 15, 445.

    3. [3]

      (3) Cai, J.;Wang, L.;Wu, P.; Li, Z. Q.; Tong, L.; Sun, S. F. J. Magn. Magn. Mater. 2008, 320, 171.  

    4. [4]

      (4) Simeonidis, K.; Sarafidis, C.; Papastergiadis, E.; Angelakeris, M.; Tsiaoussis, I.; Kalogirou, O. Intermetallics 2011, 19, 589.  

    5. [5]

      (5) Hu, J. M.; Liu, X. L.; Zhang, J. Q.; Cao, C. N. Prog. Org. Coat. 2006, 55, 388.  

    6. [6]

      (6) Blackwood, D. J.; Balak Risnan, B.; Huang, Y. Z.; Tan, C. K. J. Magn. Magn. Mater. 2001, 223, 103.

    7. [7]

      (7) Bhadra, S.; Khastgir, D.; Singha, N. K.; Lee, J. H. Prog. Polym. Sci. 2009, 34, 783.  

    8. [8]

      (8) Oh, S. G.; Im, S. S. Curr. Appl. Phys. 2002, 2, 273.  

    9. [9]

      (9) Lu, H. B.; Zhou, Y. Z.; Vongehr, S.; Hu, K.; Meng, X. K. Synth. Met. 2011, 161, 1368.

    10. [10]

      (10) Sathiyanarayanan, S.; Devi, S.; Venkatachari, G. Prog. Org. Coat. 2006, 56, 114.  

    11. [11]

      (11) Brozová, L.; Holler, P.; Kovárová, J.; Stejskal, J.; Trchová, M. Polym. Degrad. Stab. 2008, 93, 592.  

    12. [12]

      (12) Geng, L. N.;Wu, S. H. Chin. J. Inorg. Chem. 2011, 27, 47. [耿丽娜, 吴世华. 无机化学学报, 2011, 27, 47.]

    13. [13]

      (13) Shi, L.; Luo, Z. Y.;Wu, X. D.; Yang, X. J.; Lu, L. D.;Wang, X. Spectrosc. Spectr. Anal. 2011, 31, 461. [史莉, 罗志远, 武晓东, 杨绪杰, 陆路德, 汪信. 光谱学与光谱分析, 2011, 31, 461.]

    14. [14]

      (14) Zhou, J. H.; Sui, Z. J.; Zhu, J.; Li, P.; Chen, D.; Dai, Y. C.; Yuan, W. K. Carbon 2007, 45, 785.  

    15. [15]

      (15) Rao, P. S.; Sathyanarayana, D. N.; Palaniappan, S. Macromolecules 2002, 35, 4988.  

    16. [16]

      (16) Yoshimoto, S.; Ohashi, F.; Kameyama, T. J. Polym. Sci. Part BPolym. Phys. 2005, 43, 2705.  

    17. [17]

      (17) Wang, F. C.; Lü, Y.; Xu, M.; Gao, Y. Chin. J. Inorg. Chem. 2009, 25, 465. [王凤春, 吕莹, 徐敏, 高雨. 无机化学学报, 2009, 25, 465. ]

    18. [18]

      (18) Su, B. T.; Zuo, X.W.; Hu, C. L.; Lei, Z. Q. Acta Chim. Sin. 2008, 66, 2681. [苏碧桃, 左显维, 胡常林, 雷自强. 化学学报, 2008, 66, 2681.]

    19. [19]

      (19) Kapil, K.; Taunk, M.; Chand, S. J. Mater. Sci.- Mater. Electron. 2010, 21, 399.  

    20. [20]

      (20) Ma, J. J.; Zhang, X. B.; Yan, C.; Tong, Z.W.; Inoue, H. J. Mater. Sci. 2008, 43, 5534.  

    21. [21]

      (21) Jin, Z. Q.; Chakka, V. M.;Wang, Z. L.; Liu, J. P.; Kadolkar, P.; Ott, R. D. Journal of the Minerals, Metals and Materials Society 2006, 58 (6), 46.

    22. [22]

      (22) Chang, K. T.;Weng, C. I. Comput. Mater. Sci. 2008, 43, 1048.  

    23. [23]

      (23) Bica, I. J. Ind. Eng. Chem. 2009, 15, 605.

    24. [24]

      (24) Aoyagi, S.; Yano, A.; Yanagida, Y.; Tanihira, E.; Tagawa, A.; Iimoto, M. Chem. Phys. 2006, 331, 137.  

    25. [25]

      (25) Okada, T.;Wakayama, N. I.;Wang, L. B.; Shingu, H.; Okano, J. I.; Ozawa, T. Electrochim. Acta 2003, 48, 531.  

    26. [26]

      (26) Zeng, J.H.; Liao, S. J.; Lee, J. Y.; Liang, Z. X. Int. J. Hydrog. Energy 2010, 35, 942.  

    27. [27]

      (27) Rhen, F. M. F.; Hinds, G.; Coey, J. M. D. Electrochem. Commun. 2004, 6, 413.  

    28. [28]

      (28) Lu, Z. P.; Yang,W. Corrosion Sci. 2008, 50, 510.  

    29. [29]

      (29) Rabah, K. L.; Chopart, J. P.; Schloerb, H.; Saulnier, S.; Aaboubi, O.; Uhlemann, M.; Elmi, D.; Amblard, J. J. Electroanal. Chem. 2004, 571 (1), 85.

    30. [30]

      (30) Li, S. Q.; Zhang, G. L.; Jing, G. L.; Kan, J. Q. Synth. Met. 2008, 158, 242.  

  • 加载中
    1. [1]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    2. [2]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    3. [3]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    8. [8]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    9. [9]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    10. [10]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    11. [11]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    14. [14]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    15. [15]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    16. [16]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    17. [17]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    18. [18]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    19. [19]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    20. [20]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

Metrics
  • PDF Downloads(671)
  • Abstract views(1689)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return