Citation: ZHUANG Shu-Xin, LIU Su-Qin, ZHANG Jin-Bao, TU Fei-Yue, HUANG Hong-Xia, HUANG Ke-Long, LI Yan-Hua. Application of Nanoporous Perovskite La1-xCaxCoO3 in an Al-H2O2 Semi Fuel Cell[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 355-360. doi: 10.3866/PKU.WHXB201111293 shu

Application of Nanoporous Perovskite La1-xCaxCoO3 in an Al-H2O2 Semi Fuel Cell

  • Received Date: 6 September 2011
    Available Online: 29 November 2011

    Fund Project: 国家高技术研究发展计划(863)(2008AA031205) (863)(2008AA031205)中南大学博士创新基金(1343-74334000005)资助项目 (1343-74334000005)

  • Perovskite-type series of compounds La1-xCaxCoO3 (x=0.2, 0.4, 0.5) were synthesized by a modified amorphous citrate precursor method. Their catalytic activities for hydrogen peroxide electroreduction in 3.0 mol·dm-3 KOH at room temperature were evaluated by cyclic voltammetry and galvanostatic measurements. The influences of annealing temperature and the molar ratio of La to Ca of La1-xCaxCoO3 on catalytic performance were investigated. Among the series of compounds, La0.6Ca0.4CoO3 calcined at 650 °C exhibited the highest catalytic activity. An aluminum-hydrogen peroxide semi fuel cell using La0.6Ca0.4CoO3 as cathode catalyst achieved a peak power density of 201 mW·cm-2 at 150 mA·cm-2 and 1.34 V running in 0.4 mol·dm-3 H2O2.
  • 加载中
    1. [1]

      (1) Sung,W.; Choi, J.W. J. Power Sources 2007, 172, 198.  

    2. [2]

      (2) Bewer, T.; Beckmann, T.; Dohle, H.; Mergel, J.; Stolten, D. J. Power Sources 2004, 125, 1.  

    3. [3]

      (3) Prater, D. N.; Rusek, J. J. Appl. Energy 2003, 74, 135.  

    4. [4]

      (4) Gu, L.; Luo, N.; Miley, G. H. J. Power Sources 2007, 173, 77.  

    5. [5]

      (5) Raman, R. K.; Prashant, S. K.; Shukla, A. K. J. Power Sources 2006, 162, 1073.  

    6. [6]

      (6) Chatenet, M.; Micoud, F.; Roche, I.; Chainet, E.; Vondrák, J. Electrochim. Acta 2006, 51, 5452.  

    7. [7]

      (7) Pei, F.;Wang, Y.;Wang, X.; He, P.; Chen, Q.;Wang, X.;Wang, H.; Yi, L.; Guo, J. Int. J. Hydrog. Energy 2010, 35, 8136.  

    8. [8]

      (8) Ponce de León, C.;Walsh, F. C.; Patrissi, C. J.; Medeiros, M. G.; Bessette, R. R.; Reeve, R.W.; Lakeman, J. B.; Rose, A.; Browning, D. Electrochem. Commun. 2008, 10, 1610.  

    9. [9]

      (9) Raman, R. K.; Choudhury, N. A.; Shukla, A. K. Electrochem. Solid-State Lett. 2004, 7, A488.

    10. [10]

      (10) Brodrecht, D. J.; Rusek, J. J. Appl. Energy 2003, 74, 113.  

    11. [11]

      (11) Yang,W.; Yang, S.; Sun,W.; Sun, G.; Xin, Q. J. Power Sources 2006, 160, 1420.  

    12. [12]

      (12) Popovich, N. A.; vind, R. J. Power Sources 2002, 112, 36.  

    13. [13]

      (13) Hasvold, ø.; Johansen, K. H.; Mollestad, O.; Forseth, S.; Størkersen, N. J. Power Sources 1999, 80, 254.  

    14. [14]

      (14) Hasvold, ø.; Størkersen, N. J.; Forseth, S.; Lian, T. J. Power Sources 2006, 162, 935.  

    15. [15]

      (15) Yang,W.; Yang, S.; Sun,W.; Sun, G.; Xin, Q. Electrochim. Acta 2006, 52, 9.  

    16. [16]

      (16) Patrissi, C. J.; Bessette, R. R.; Kim, Y. K.; Schumacher, C. R. J. Electrochem. Soc. 2008, 155, B558.

    17. [17]

      (17) Savinova, E. R.;Wasle, S.; Doblhofer, K. Electrochim. Acta 1998, 44, 1341.  

    18. [18]

      (18) Prakash, J.; Joachin, H. Electrochim. Acta 2000, 45, 2289.  

    19. [19]

      (19) Strbac, S. Electrochim. Acta 2011, 56, 1597.  

    20. [20]

      (20) Zeis, R.; Lei, T.; Sieradzki, K.; Snyder, J.; Erlebacher, J. J. Catal. 2008, 253, 132.  

    21. [21]

      (21) Qin, X.;Wang, H.;Wang, X.; Miao, Z.; Fang, Y.; Chen, Q.; Shao, X. Electrochim. Acta 2011, 56, 3170.  

    22. [22]

      (22) Fu, R.; Zheng, J. S.;Wang, X. Z.; Ma, J. X. Acta Phys. -Chim. Sin. 2011, 27, 2141. [符蓉, 郑俊生, 王喜照, 马建新. 物理化学学报, 2011, 27, 2141.]

    23. [23]

      (23) Wu, Y. N.; Liao, S. J. Acta Phys. -Chim. Sin. 2010, 26, 669. [吴燕妮, 廖世军. 物理化学学报, 2010, 26, 669.]

    24. [24]

      (24) Bouwkamp-Wijnoltz, A. L.; Visscher,W. R.; van Veen, J. A. Electrochim. Acta 1998, 43, 3141.  

    25. [25]

      (25) Raman, R. K.; Shukla, A. K. J. Appl. Electrochem. 2005, 35, 1157.  

    26. [26]

      (26) Herrmann, I.; Kramm, U. I.; Fiechter, S.; Bogdanoff, P. Electrochim. Acta 2009, 54, 4275.  

    27. [27]

      (27) Cao, D.; Chao, J.; Sun, L.;Wang, G. J. Power Sources 2008, 179, 87.  

    28. [28]

      (28) ldik, J. S.; Nesbitt, H.W.; Noel, J. J.; Shoesmith, D.W. Electrochim. Acta 2004, 49, 1699.  

    29. [29]

      (29) Keech, P. G.; Noel, J. J.; Shoesmith, D.W. Electrochim. Acta 2008, 53, 5675.  

    30. [30]

      (30) de Lara nzález, G. L.; Kahlert, H.; Scholz, F. Electrochim. Acta 2007, 52, 1968.  

    31. [31]

      (31) Zhang, H. M.; Shimizu, Y.; Teraoka, Y.; Miura, N.; Yamazoe, N. J. Catal. 1990, 121, 432.  

    32. [32]

      (32) Tanaka, H.; Misono, M. Curr. Opin. Solid State Mater. Sci. 2001, 5, 381.  

    33. [33]

      (33) Weidenkaff, A.; Ebbinghaus, S. G.; Lippert, T. Chem. Mater. 2002, 14, 1797.  

    34. [34]

      (34) Lee, C. K.; Striebel, K. A.; Mclarnon, F. R.; Cairns, E. J. J. Electrochem. Soc. 1997, 144, 3801.  

    35. [35]

      (35) Müller, S.; Holzer, F.; Haas, O. J. Appl. Electrochem. 1998, 28, 895.  

    36. [36]

      (36) Zhuang, S.; Huang, K.; Huang, H.; Liu, S.; Fan, M. J. Power Sources 2011, 196, 4019.  

    37. [37]

      (37) Zhuang, S.; Huang, C.; Huang, K.; Hu, X.; Tu, F.; Huang, H. Electrochem. Commun. 2011, 13, 321.  

    38. [38]

      (38) Deganello, F.; Marcì, G.; Deganello, G. J. Eur. Ceram. Soc. 2009, 29, 439.  

    39. [39]

      (39) Jakab, E.; Omastová, M. J. Anal. Appl. Pyrolysis 2005, 74, 204.  

    40. [40]

      (40) Yang, J.; Xu, J. J. Electrochem. Commun. 2003, 5, 306.  

    41. [41]

      (41) Liu, H. P.;Wang, Z. X.; Li, X. H.; Guo, H. J.; Peng,W. J. J. Power Sources 2008, 184, 469.  

    42. [42]

      (42) Kahoul, A.; Hammouche, A.; Poillerat, G.; De Doncker, R.W. Catal. Today 2004, 89, 287.  

    43. [43]

      (43) Wang, G.; Bao, Y.; Tian, Y.; Xia, J.; Cao, D. J. Power Sources 2010, 195, 6463.  

    44. [44]

      (44) Rota, M.; Comninellis, C.; Muller, S.; Holzer, F.; Haas, O. J. Appl. Electrochem. 1995, 25, 114.

  • 加载中
    1. [1]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    2. [2]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    3. [3]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    4. [4]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    5. [5]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    6. [6]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    7. [7]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    8. [8]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    9. [9]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    10. [10]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    11. [11]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    12. [12]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    15. [15]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    16. [16]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    17. [17]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    18. [18]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    19. [19]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    20. [20]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

Metrics
  • PDF Downloads(974)
  • Abstract views(1901)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return