Citation: SHI Lei, JIANG Huan-Feng, YIN Wei, WANG Hua-Hua, WANG Hui, ZHANG Lei, JI Liang-Nian, LIU Hai-Yang. Synthesis, Fluorescence and DNA Photocleavage Activity of Phenothiazine-Corrole Gallium(III) Complexes[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 465-469. doi: 10.3866/PKU.WHXB201111291 shu

Synthesis, Fluorescence and DNA Photocleavage Activity of Phenothiazine-Corrole Gallium(III) Complexes

  • Received Date: 13 October 2011
    Available Online: 29 November 2011

    Fund Project: 国家自然科学基金(20971046, 21171057, 61178037, 11004256) (20971046, 21171057, 61178037, 11004256) 广东省自然科学基金(10351064101000000) (10351064101000000) 光电材料与技术国家重点实验室(中山大学)开放基金及广东第二师范学院教授博士科研专项经费研究项目(10ARF14)资助 (中山大学)开放基金及广东第二师范学院教授博士科研专项经费研究项目(10ARF14)

  • Phenothiazine (PTZ)-corrole dyads 1-3 and their gallium(III) complexes 4-6 have been synthesized and characterized. The steady-state absorption and emission spectra and the time-resolved fluorescence decay profiles have been measured in toluene. The radiative and nonradiative rate constants have been obtained from the fluorescence quantum yields and monoexponential fluorescence lifetimes. The absorption spectra revealed that the gallium(III) corrole dyads exhibit stronger Soret bands and Q bands than free base corrole dyads. The fluorescence quantum yields of 1-3 are 0.156, 0.134, and 0.139, and the radiative rate constants are 4.02×107, 3.47×107, and 2.89×107 s-1, respectively. The fluorescence quantum yields of 4-6 are 0.502, 0.443, and 0.494, and the radiative rate constants are 20.9×107, 16.78×107, and 21.11×107 s-1, which are obviously higher than those of the corresponding free base corroles. The lifetimes of 4-6 are 2.40, 2.64, and 2.34 ns, respectively, which are somewhat shorter than those of the corresponding free base corroles. Agarose gel electrophoresis shows that these gallium(III) corrole dyads could cleave supercoiled DNA (form I) to give nicked-circular DNA (form II) under irradiation.
  • 加载中
    1. [1]

      (1) Fang, H. F.; Ling, Z.; Brothers, J. P.; Fu, X. F. Chem. Commun. 2011, 47, 11677.  

    2. [2]

      (2) Nigel-Etinger, I.; Mahammed, A.; Gross, Z. Catal. Sci. Technology 2011, 1 (4), 578.

    3. [3]

      (3) Zhai, Q. Q.; Xu, L.; Ge, Y. S.; Tian, T.;Wu,W. D.; Yan, S. Y.; Zhou, Y. Y.; Deng, M. G.; Liu, Y.; Zhou, X. Chem. Eur. J. 2011, 17 (32), 8890.

    4. [4]

      (4) Aviv, I.; Gross, Z. Chem. Commun. 2007, 1987 and references therein.

    5. [5]

      (5) Liu, H. Y.; Yam, F.; Xie, Y. T.; Li, X. Y.; Chang, C. K. J. Am. Chem. Soc. 2009, 131, 12890.  

    6. [6]

      (6) Flamigni, L.; Gryko, D. T. Chem. Soc. Rev. 2009, 38, 1635.  

    7. [7]

      (7) Botoshansky, M.; Palmer, J. H.; Durrell, A. C.; Gray, H. B.; Gross, Z. J. Am. Chem. Soc. 2011, 133 (33), 12899.

    8. [8]

      (8) Tasior, M.; Gryko, D. T.; Cembor, M.; Jaworski, J. S.; Venturac B.; Flamigni L. New J. Chem. 2007, 31, 247.  

    9. [9]

      (9) Tasior, M.; Gryko, D. T.; Shen, J.; Kadish, K. M.; Becherer, T.; Venturac, B.; Flamigni, L. J. Phys. Chem. C 2008, 112, 19699.  

    10. [10]

      (10) He, C. L.; Ren, F. L.; Zhang, X. B.; Han, Z. X. Talanta 2006, 70, 364.  

    11. [11]

      (11) Ghosh, A.; Jynge, K. Chem. Eur. J. 1997, 3, 823.  

    12. [12]

      (12) Simkhovich, L.; ldberg, I.; Gross, Z. J. Inorg. Biochem. 2000, 80 (3-4), 235.

    13. [13]

      (13) Bendix, J.; Dmochowski, I. J.; Gray, H. B.; Mahammed, A.; Simkhovich, L.; Gross, Z. Angew. Chem. Int. Edit. 2000, 39 (22), 4048.

    14. [14]

      (14) Liu, X.; Mahammed, A.; Tripathy, U.; Gross, Z.; Steer, R. P. Chem. Phys. Lett. 2008, 459 (1-6), 113.

    15. [15]

      (15) Saltsman, I.; Mahammed, A.; ldberg, I.; Tkachenko, E.; Botoshansky, M.; Gross, Z. J. Am. Chem. Soc. 2002, 124 (25), 7411.

    16. [16]

      (16) Sorasaenee, K.; Taqavi, P.; Henling, L. M.; Gray, H. B.; Tkachenko, E.; Mahammed, A.; Gross, Z. J. Porphyr. Phthalocyanines 2007, 11 (3-4), 189.

    17. [17]

      (17) Mahammed, A.; Gray, H. B.;Weaver, J. J.; Sorasaenee, K.; Gross, Z. Bioconjugate Chem. 2004, 15 (4), 738.

    18. [18]

      (18) Agadjanian, H.; Ma, J.; Rentsendorj, A.; Valluripalli, V.; Hwang, J. Y.; Mahammed, A.; Farkas, D. L.; Gray, H. B.; Gross, Z.; Medina-Kauwe, L. K. Proc. Nat. Acad. Sci. U. S. A. 2009, 106 (15), 6105.

    19. [19]

      (19) Motohashi, N. Antitumor Activities of Phenothiaiznes. In Phenothiazines and 1,4-Benzothiazines. Chemical and Biological Aspects. Bioactive Molecules. Gupta, R. R. Ed.; Elsevier: Amsterdam, 1988; Vol. 4, pp 705-770.

    20. [20]

      (20) Viola, G.; Dall'Acqua, F. Current Drug Targets 2006, 7, 1135.  

    21. [21]

      (21) Shi, L.; Liu, H. Y.; Peng, K. M.;Wang, X. L.; You, L. L.; Zhang, L.;Wang, H.; Ji, L. N.; Jiang, H. F. Tetrahedron Lett. 2010, 51, 3439.  

    22. [22]

      (22) Adler, A. D.; Lon , F. R.; Finarelli, J. D.; ldmacher, J.; Assour, J.; Korsakoff, L. J. Org. Chem. 1967, 32 (2), 476.

    23. [23]

      (23) Ghosh, A.;Wondimagegn, T.; Parusel, A. B. J. J. Am. Chem. Soc. 2000, 122, 5100.  

    24. [24]

      (24) Peng, K. M.; Shao,W. L.;Wang, H. H.; Ying, X.;Wang, H.; Ji, L. N.; Liu, H. Y. Acta Phys. -Chim. Sin. 2011, 27, 199. [彭开美, 邵文莉, 汪华华, 应晓, 王惠, 计亮年, 刘海洋. 物理化学学报, 2011, 27, 199.]

    25. [25]

      (25) Gross, Z.; Galili, N.; Simkhovich, L.; Saltsman, I.; Botoshansky, M.; Bläser, D.; Boese, R.; ldberg, I. Org. Lett. 1999, 1, 599.  

    26. [26]

      (26) Kowalska, D.; Liu, X.; Tripathy, U.; Mahammed, A.; Gross, Z.; Hirayama, S.; Steer, R. P. Inorg. Chem. 2009, 48 (6), 2670.

  • 加载中
    1. [1]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    2. [2]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    3. [3]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    4. [4]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    5. [5]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    6. [6]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    7. [7]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    8. [8]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    9. [9]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    10. [10]

      Pengfei LiChulin QuFan WuHu GaoChengyan ZhaoYue ZhaoZhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292

    11. [11]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    12. [12]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    13. [13]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    14. [14]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    15. [15]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    16. [16]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    17. [17]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

    18. [18]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

    19. [19]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    20. [20]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

Metrics
  • PDF Downloads(842)
  • Abstract views(2437)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return